Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
1/ Đặt \(a=x^3-x^2\left(a\ne0\right)\), khi đó phương trình đề cho trở thành \(a-\frac{8}{a}=2\Leftrightarrow a^2-2a-8=0\Leftrightarrow\left(a-4\right)\left(a+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-4=0\\a+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x^3-x^2=4\\x^3-x^2=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)\left(x^2+x+2\right)=0\\\left(x+1\right)\left(x^2-2x+2\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\right]=0\\\left(x+1\right)\left[\left(x-1\right)^2+1\right]=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
KL: .................
b/ Tương tự đặt \(\frac{x^2+x-5}{x}=b\left(x\ne0\right)\) phương trình trở thành \(b+\frac{1}{3b}+4=0\)
c/ Tương tự đặt \(c=x^2-x\left(c\ne-1,2\right)\) phương trình trở thành \(\frac{c}{c-1}-\frac{c+2}{c-2}=1\)
d/ Tương tự đặt \(d=4x+\frac{7}{x}\). Chia cả tử và mẫu của 2 phân thức cho $x$ phương trình trở thành \(\frac{4}{d-8}+\frac{3}{d-10}=1\)
e/ Tương tự đặt \(e=x+\frac{1}{x}\), phương trình trở thành \(8\left(e^2-2\right)-34e+51=0\)
f) Xét $y=0$ Thay ..............
Xét $y \ne 0$ Phân tích VT phương trình thành nhân tử, phương trình trở thành \(\left(y^2+y+1\right)\left(y^2+4y+1\right)=0\) chia cả 2 vế của phương trình với $y^2$ phương trình tương đương\(\left(y+\frac{1}{y}+1\right)\left(y+\frac{1}{y}+4\right)=0\)
Đặt \(t=y+\frac{1}{y}\), phương trình trở thành \(\left(t+1\right)\left(t+4\right)=0\)
---------------
Đây là phần hướng dẫn làm bài theo hướng đặt ẩn phụ của mình, ngoài ra còn các cách giải khác bạn nhé!