K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

a: \(\left\{{}\begin{matrix}x+4y=-11\\5x-4y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=-10\\x+4y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\y=\dfrac{-11-x}{4}=\dfrac{-11+\dfrac{5}{3}}{4}=-\dfrac{7}{3}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}2x-y=7\\3x+5y=-22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-3y=21\\6x+15y=-66\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-18y=78\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-13}{3}\\x=\dfrac{y+7}{2}=\dfrac{4}{3}\end{matrix}\right.\)

3 tháng 2 2016

<=> xy+5x+3y+15=xy+8x+y+8                 <=> 3x-2y=7           <=>  9x-6y=21 <=> x=3            <=> x=3

      10xy+14x-15y-21=10xy+10x-12y-12            4x-3y=9                  8x-6y=18       8.3-6y=18           y=1

3 tháng 2 2016

moi hok lop 6 thoi

2 tháng 2 2016

em moi hoc lop 6 thoi sao lam duoc toan lop 9

2 tháng 2 2016

Grade 5 students only know how to do

3 tháng 8 2017

Ta có hệ \(\hept{\begin{cases}\left(4x^2+1\right)x+\left(y-3\right)\sqrt{5-2y}=0\left(1\right)\\4x^2+y^2+2\sqrt{3-4x}=7\left(2\right)\end{cases}}\)

ĐK \(\hept{\begin{cases}y\ge\frac{5}{2}\\x\le\frac{3}{4}\end{cases}}\)

Đặt \(\hept{\begin{cases}2x=a\\\sqrt{5-2y}=b\ge0\end{cases}\Rightarrow\hept{\begin{cases}4x^2=a^2\\5-2y=b^2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}4x^2=a^2\\y-3=\frac{5-b^2}{2}-3=\frac{-1-b^2}{2}\end{cases}}\)

Thế vào (1) ta có \(\left(a^2+1\right)\frac{a}{2}+\frac{-1-b^2}{2}b=0\)

\(\Leftrightarrow\frac{a^3+a}{2}+\frac{-b^3-b}{2}=0\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Leftrightarrow a=b\)vì \(a^2+ab+b^2+1>0\forall a,b\)

\(\Rightarrow2x=\sqrt{5-2y}\Rightarrow4x^2=5-2y\Rightarrow y=\frac{5-4x^2}{2}\)

Thế y vào (2) ta có \(4x^2+\left(\frac{5-4x^2}{2}\right)^2+2.\sqrt{3-4x}=7\)

\(\Leftrightarrow16x^2+\left(5-4x^2\right)^2+8\sqrt{3-4x}=28\)\(\Leftrightarrow16x^2+25-40x^2+16x^4+8\sqrt{3-4x}-28=0\)

\(\Leftrightarrow16x^4-24x^2+8\sqrt{3-4x}-3=0\)

\(\Leftrightarrow\left(16x^4-1\right)-\left(24x^2-6\right)+\left(8\sqrt{3-4x}-8\right)=0\)

\(\Leftrightarrow\left(4x^2-1\right)\left(4x^2+1\right)-6\left(4x^2-1\right)+\left(8\sqrt{3-4x}-8\right)=0\)

\(\Leftrightarrow\left(4x^2-1\right)\left(4x^2+1\right)-6\left(4x^2-1\right)+8.\frac{2-4x}{\sqrt{3-4x}+1}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)\left(4x^2+1\right)-6\left(2x+1\right)\left(2x-1\right)-8.2.\frac{2x-1}{\sqrt{3-4x}+1}=0\)

\(\Leftrightarrow\left(2x-1\right)\left[\left(2x+1\right)\left(4x^2+1\right)-6\left(2x+1\right)-\frac{16.1}{\sqrt{3-4x}+1}\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left[\left(2x+1\right)\left(4x^2-5\right)-\frac{16}{\sqrt{3-4x}+1}\right]=0\)

\(\Leftrightarrow2x-1=0\)

Vì với \(y=\frac{5-4x^2}{2}\ge\frac{5}{2}\Rightarrow4x^2-5< 0\Rightarrow\left(2x+1\right)\left(4x^2-5\right)-\frac{16}{\sqrt{3-4x}+1}< 0\)

\(\Leftrightarrow x=\frac{1}{2}\Rightarrow y=\frac{5-4\left(\frac{1}{2}\right)^2}{2}=2\)

Vậy hệ có nghiệm \(\left(x;y\right)=\left(\frac{1}{2};2\right)\)

19 tháng 10 2021

tự làm đi

Câu 1: Cho hai số thực a,b thỏa mãn điều kiện ab=1,a+b khác 0. Tính giá trị biểu thức: P=1/(a+b)^3(1/a^3+1/b^3)+3/(a+b)^4(1/a^2+1/b^2)+6/(a+b)^5(1/a+1/b) Câu 2: a) Giải phương trình:2x^2+x+3=3x căn(x+3) b) Chứng minh rằng abc(a^3-b^3)(b^3-c^3)(c^3-a^3) chia hết cho 7 với mọi số nguyên a,b,c. Câu 3: Cho hai số dương a,b thỏa mãn điều kiện a+b<=1. Chứng minh rằng:a^2-3/(4a)-a/b<=-9/4 Câu 4: Cho phương trình x^2-2(m-2)x+m^2-3m+3=0(m...
Đọc tiếp

Câu 1: Cho hai số thực a,b thỏa mãn điều kiện ab=1,a+b khác 0. Tính giá trị biểu thức:
P=1/(a+b)^3(1/a^3+1/b^3)+3/(a+b)^4(1/a^2+1/b^2)+6/(a+b)^5(1/a+1/b)
Câu 2:
a) Giải phương trình:2x^2+x+3=3x căn(x+3)
b) Chứng minh rằng abc(a^3-b^3)(b^3-c^3)(c^3-a^3) chia hết cho 7 với mọi số nguyên a,b,c.
Câu 3: Cho hai số dương a,b thỏa mãn điều kiện a+b<=1. Chứng minh rằng:a^2-3/(4a)-a/b<=-9/4
Câu 4: Cho phương trình x^2-2(m-2)x+m^2-3m+3=0(m là tham số). Tìm m để phương trình có hai nghiệm x_1 và x_2 sao cho 3x_1.x_2-x_1^2-x_2^2-5=0
Câu 5: Giải hệ phương trình:
x+y=-6, căn((y+2)/(2x-1))+căn((2x-1)/(y+2))=2
Câu 6: Tìm nghiệm nguyên của phương trình:
3x^2-2y^2-5xy+x-2y-7=0
Câu 7: Cho x,y là các số thực dương thay đổi thỏa mãn điều kiện x+y<=1. Tìm min của P=(x^2+1/4y^2)(y^2+1/4x^2)
Câu 8: Giải phương trình và hệ phương trình:
a) (x^2-9)căn(2-x)=x(x^2-9)
b) (x^2+4y^2)^2-4(x^2+4y^2)=5,3x^2+2y^2=5
Câu 9: Cho phương trình (x-2m)(x+m-3)/(x-1)=0.Tìm m để x_1^2+x_2^2-5x_1.x_2=14m^2-30m+4
Câu 10: Chứng minh rằng với mọi số nguyên n>=1 ta luôn có:1/ căn(n+1)-căn(n)>=2 căn n

@Akai Haruma

1
15 tháng 6 2018

Ai ra tay giúp em với ạ.

bài 1:Giải các phương trình và hệ phương trình sau: a)căn(x+2)(x-y+3)=căn(y),x^2+(x+3)(2x-y+5)=x+16 b)căn(3x^2-6x-6)=3 căn(2-x)^5)+(7x-19)căn(2-x) c)x^2-x-4=2 căn(x-1)(1-x) d)x^3+xy^2-10y=0,x62=6y^2=10 e)x văn(2x-3)=3x-4 f)x+y+1/y=9/x, x+y-4/x=4y/x^2 Bài 2:Xét các số thực dương a,b,c thỏa mãn: abc=1. Tìm giá trị lớn nhất của biểu thức: T=a/(b^4+c^4+a)+b/(a^4+c^4+b)+c/(a^4+b^4+c) bài 3:Cho a,b là các số thực thỏa mãn các điều kiện sau...
Đọc tiếp

bài 1:Giải các phương trình và hệ phương trình sau:
a)căn(x+2)(x-y+3)=căn(y),x^2+(x+3)(2x-y+5)=x+16
b)căn(3x^2-6x-6)=3 căn(2-x)^5)+(7x-19)căn(2-x)
c)x^2-x-4=2 căn(x-1)(1-x)
d)x^3+xy^2-10y=0,x62=6y^2=10
e)x văn(2x-3)=3x-4
f)x+y+1/y=9/x, x+y-4/x=4y/x^2
Bài 2:Xét các số thực dương a,b,c thỏa mãn: abc=1. Tìm giá trị lớn nhất của biểu thức:
T=a/(b^4+c^4+a)+b/(a^4+c^4+b)+c/(a^4+b^4+c)
bài 3:Cho a,b là các số thực thỏa mãn các điều kiện sau đây:15b^2+20b+6=0,ab khác 1.15b^2+20b+6=0;ab khác 1.CMR:b^2/(ab^2-9(ab+1)^3)=6/2015
Bài 4: Tìm giá trị nhỏ nhất của hàm số:f(x)=|x-1|+2|x-2|+3|x-3|+4|x-4|
Bài 5: Cho 3 số thực dương x,y,z thỏa mãn:1/x^2+1/y^2+1/z^2=1. Tìm giá trị nhỏ nhất của biểu thức:
P=y^2z^2/x(y^2+z^2)+z^2x^2/y(z^2+x^2)+x^2y^2/z(x^2+y^2)
Bài 6:Tìm nghiệm nguyên của phương trình:x^2-2y(x-y)=2(x+1)
Bài 7:Cho ba số thực x,y,z thỏa mãn điều kiện:x+y+z=0, và xyz khác 0. Tính giá trị biểu thức:x^2/(y^2+z^2-x^2)+y^2/(z^2+x^2-y^2)+z^2/(x^2+y^2-z^2)
bài 8:Tìm các cặp số nguyên (x,y) thỏa mãn:2015(x^2+y^2)-2014(2xy+1)=25

@Akai Haruma

@học tốt toán lý hóa

@Toán ơi ta yêu toán lắm!

@Toán 9

@Người Đã từng là quán quân Toán quốc gia

@Yêu Toán

@Quản Trị Toán

0
15 tháng 3 2016

câu 1

a)C1:denta

x^2 +5x+4 =0 

<=>52-4(1.4)=9

\(\Leftrightarrow x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-5\pm\sqrt{9}}{2}\)

=>x=-4 hoặc -1

C2:vi ét

tổng các nghiệm x1+x2=\(-\frac{b}{a}=-5\)

tích các nghiệm x1*x2=\(\frac{c}{a}=4\)

=>x=-4 hoặc -1

a: \(\Leftrightarrow\left\{{}\begin{matrix}4x+10y=6\\15x-10y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{34}{19}\\y=\dfrac{25}{19}\end{matrix}\right.\)

b: x+3y=5 và 2x-5y=-1

=>2x+6y=10 và 2x-5y=-1

=>11y=11 và x+3y=5

=>y=1 và x=2

c: 3x-4y=18 và 2x+y=1

=>3x-4y=18 và 8x+4y=4

=>11x=22 và 2x+y=1

=>x=2 và y=1-2*2=-3