Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\x\ne\left\{3;11\right\}\end{matrix}\right.\)
Đặt \(\sqrt{x-2}=t\ge0\)
\(\Rightarrow\frac{3}{t-1}\ge\frac{5}{t-3}\)
\(\Leftrightarrow\frac{3}{t-1}-\frac{5}{t-3}\ge0\)
\(\Leftrightarrow\frac{3t-9-5t+5}{\left(t-1\right)\left(t-3\right)}\ge0\)
\(\Leftrightarrow\frac{-2t-4}{\left(t-1\right)\left(t-3\right)}\ge0\)
\(\Leftrightarrow\frac{t+2}{\left(t-1\right)\left(t-3\right)}\le0\)
\(\Leftrightarrow1< t< 3\)
\(\Rightarrow1< \sqrt{x-2}< 3\)
\(\Leftrightarrow1< x-2< 9\Rightarrow3< x< 11\)
b/
ĐKXĐ: \(x\ge3\)
- Với \(x=3\) BPT thỏa mãn
- Với \(x>3\Rightarrow\sqrt{x-3}>0\) BPT tương đương
\(x-\frac{1}{2-x}\le0\Leftrightarrow x+\frac{1}{x-2}\le0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x-2}\le0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}\le0\Rightarrow\) không tồn tại x thỏa mãn
Vậy BPT có nghiệm duy nhất \(x=3\)
ĐKXĐ: \(x\ge\frac{1}{4}\)
\(\sqrt{5x+1}\le3\sqrt{x}+\sqrt{4x-1}\)
\(\Leftrightarrow5x+1\le9x+4x-1+6\sqrt{4x^2-x}\)
\(\Leftrightarrow3\sqrt{4x^2-x}\ge1-4x\)
Do \(x\ge1\Rightarrow\left\{{}\begin{matrix}1-4x\le0\\\sqrt{4x^2-x}\ge0\end{matrix}\right.\) \(\Rightarrow\) BPT luôn đúng
Vậy nghiệm của BPT là \(x\ge\frac{1}{4}\)
b/ ĐKXĐ: \(x\ge4\)
\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}+x-3>7-x\)
\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}>10-2x\)
- Với \(x>5\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\le5\) bình phương 2 vế:
\(2\left(x^2-16\right)>4\left(x-5\right)^2\)
\(\Leftrightarrow x^2-20x+66< 0\)
\(\Rightarrow10-\sqrt{34}< x< 10+\sqrt{34}\)
Vậy nghiệm của BPT là \(x>10-\sqrt{34}\)
ĐKXĐ: \(x\ge3\)
Khi đó \(\sqrt{2x-1}\ge\sqrt{5}>1\Rightarrow\sqrt{2x-1}-1>0\)
Đồng thời \(\sqrt{x+3}>\sqrt{x-3}\) \(\forall x\Rightarrow\sqrt{x+3}-\sqrt{x-3}>0\)
Do đó BPT tương đương:
\(\sqrt{x-3}\left(\sqrt{x+3}-\sqrt{x-3}\right)\ge\sqrt{2x-1}-1\)
\(\Leftrightarrow\sqrt{x^2-9}-x+3\ge\sqrt{2x-1}-1\)
\(\Leftrightarrow\sqrt{x^2-9}\ge x-4+\sqrt{2x-1}\)
Do \(x-4+\sqrt{2x-1}\ge3-4+\sqrt{5}>0;\forall x\ge3\) nên BPT tương đương:
\(x^2-9\ge x^2-8x+16+2x-1+2\left(x-4\right)\sqrt{2x-1}\)
\(\Leftrightarrow\left(x-4\right)\sqrt{2x-1}-3\left(x-4\right)\le0\)
\(\Leftrightarrow\left(x-4\right)\left(\sqrt{2x-1}-3\right)\le0\)
\(\Leftrightarrow\left(x-4\right)\left(\frac{2x-1-9}{\sqrt{2x-1}+3}\right)\le0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\le0\Leftrightarrow4\le x\le5\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\-\frac{4}{\sqrt{3}}\le x\le\frac{4}{\sqrt{3}}\end{matrix}\right.\)
- Với \(x< 0\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT vô nghiệm
- Với \(0< x\le\frac{4}{\sqrt{3}}\) hai vế đều dương, bình phương:
\(\frac{4}{x^2}+\frac{1}{4}-\frac{2}{x}>\frac{4}{x^2}-\frac{3}{4}\)
\(\Leftrightarrow\frac{2}{x}< 1\Rightarrow x>2\)
Vậy nghiệm của BPT là \(2< x\le\frac{4}{\sqrt{3}}\)
ĐKXĐ: \(x\ge2\)
Khi đó ta có \(x^2-x+1\ge3\Rightarrow1-2\sqrt{x^2-x+1}< 0\)
Do đó BPT tương đương:
\(\sqrt{2\left(x^2+7x+3\right)}-\sqrt{x^2+x-6}-3\sqrt{x+1}\le0\)
\(\Leftrightarrow\sqrt{2x^2+14x+6}\le\sqrt{x^2+x-6}+3\sqrt{x+1}\)
\(\Leftrightarrow2x^2+14x+6\le x^2+10x+3+6\sqrt{\left(x+1\right)\left(x^2+x-6\right)}\)
\(\Leftrightarrow x^2+4x+3\le6\sqrt{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\le6\sqrt{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}\le6\sqrt{x-2}\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\le36\left(x-2\right)\)
\(\Leftrightarrow x^2-32x+75\le0\)
\(\Rightarrow16-\sqrt{181}\le x\le16+\sqrt{181}\)