K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2018

\(x^2-2^2>0\)

\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\)

23 tháng 6 2018

\(x^2-4>0\Leftrightarrow\left(x+2\right)\left(x-2\right)>0\)

\(TH1:\left\{{}\begin{matrix}x-2>0\\x+2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>2\\x>-2\end{matrix}\right.\Rightarrow x>2\)

\(TH2:\left\{{}\begin{matrix}x-2< 0\\x+2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 2\\x< -2\end{matrix}\right.\Rightarrow x< -2\)

Từ 2 trường hợp: \(\Rightarrow\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\)

11 tháng 4 2017

123764

16 tháng 7 2021

| 2-4x | = 4x-2

<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)

<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)

<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)

=> \(S=\left\{\frac{1}{2};\infty\right\}\)

2x-7> 3(x-1)

<=>2x-7>3x-3

<=>2x-3x>-3+7

<=>-x>4

<=>x<4

=>S={x/x<4}

1-2x<4(3x-2)

<=>1-2x<12x-8

<=>-2x-12x<-8-1

<=>-14x<-9

<=>x>\(\frac{9}{14}\)

=>S={\(\frac{9}{14}\)}

-3x+2|-4 -x|> 0

<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)

<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)

=>S={x/x<3;x/x<\(\frac{1}{4}\)}

4x-1|x-2|< 0

<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)

<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)

=>S={x/x<\(\frac{-1}{3}\);x/x<1}

29 tháng 8 2020

Bài làm:

a) Ta có: \(x^2+4\ge4>0\left(\forall x\right)\)

=> \(5x-2\le0\)

<=> \(5x\le2\)

=> \(x\le\frac{2}{5}\)

b) Ta có: \(x^2-2x+9=\left(x^2-2x+1\right)+8=\left(x-1\right)^2+8\ge8>0\left(\forall x\right)\)

=> \(3x+4\ge0\)

<=> \(3x\ge-4\)

=> \(x\ge-\frac{4}{3}\)

29 tháng 8 2020

\(\frac{5x-2}{x^2+4}\le0\)

Vì x2 + 4 > 0 ∀ x

Nên ta chỉ cần xét 5x - 2 ≤ 0

                      <=> 5x ≤ 2

                      <=> x ≤ 2/5

Vậy nghiệm của bất phương trình là x ≤ 2/5

\(\frac{3x+4}{x^2-2x+9}\ge0\)

Ta có : x2 - 2x + 9 = ( x2 - 2x + 1 ) + 8 = ( x - 1 )2 + 8 ≥ 8 > 0 ∀ x

Nên ta chỉ cần xét 3x + 4 ≥ 0

                       <=> 3x ≥ -4

                       <=> x ≥ -4/3

Vậy nghiệm của bất phương trình là x ≥ -4/3

\(\left(2-x\right)\left(2x-5\right)\)

Th1 : \(\hept{\begin{cases}2-x>0\\2x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x< \frac{5}{2}\end{cases}}}\)

Th2 : \(\hept{\begin{cases}2-x< 0\\2x-5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x>\frac{5}{2}\end{cases}}}\)

12 tháng 8 2019

\(a,\frac{x+5}{x^2-2x+1}>0\)

\(\Leftrightarrow\frac{x+5}{\left(x-1\right)^2}>0\)

\(\Leftrightarrow x>-5\)

\(b,x^2+x+1>0\)

\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}>0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) ( luôn đúng)

12 tháng 8 2019

có nhé bn