Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1>0\\x^2+12>0\left(LD\forall x\right)\\-x+4>0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x>1\\-x>-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{4}\\x< 4\end{matrix}\right.\)
Vậy \(S=\left\{x|\dfrac{1}{4}< x< 4\right\}\)
\(b,\left(2x-1\right)\left(5-2x\right)\left(1-x\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1< 0\\5-2x< 0\\1-x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{1}{2}\\x>\dfrac{5}{2}\\x< 1\end{matrix}\right.\)
Vậy \(S=\left\{x|1>x>\dfrac{5}{2}\right\}\)
a) ( 2x + 7 )( x2 + 9 ) > 0
Vì x2 + 9 > 0 ∀ x
Nên ta chỉ xét 2x + 7 > 0
<=> x > -7/2
Vậy nghiệm của bất phương trình là x > -7/2
b) ( 3x - 2 )( x2 + 11 ) < 0
Vì x2 + 11 > 0 ∀ x
Nên ta chỉ xét 3x - 2 < 0
<=> 3x < 2
<=> x < 2/3
Vậy nghiệm của bất phương trình là x < 2/3
c) \(\frac{2x+5}{x^2+4}\ge0\)
Vì x2 + 4 > 0 ∀ x
Nên ta chỉ xét 2x + 5 ≥ 0
<=> 2x ≥ -5
<=> x ≥ -5/2
Vậy nghiệm của bất phương trình là x ≥ -5/2
bạn phân tích biểu thức thành nhân tử rồi xét :
Nếu >0 thì các nhân tử phải cùng âm hoặc dương
nếu <0 thì các nhân tử trái dấu
tương tự như phân số
nếu >0 thì tử và mẫu cùng dấu
nếu <0 thì trái dấu
:) chúc bạn làm tốt nha dễ mà
Bài 2 :
a, Ta có : \(x^2-5x+4< 0\)
\(\Leftrightarrow x^2-x-4x+4< 0\)
\(\Leftrightarrow x\left(x-1\right)-4\left(x-1\right)< 0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)< 0\)
Vậy ...
b, Ta có : \(\dfrac{x-3}{x+1}< 1\)
\(\Leftrightarrow\dfrac{x-3}{x+1}-\dfrac{x+1}{x+1}< 0\)
\(\Leftrightarrow\dfrac{x-3-x-1}{x+1}=\dfrac{-4}{x+1}< 0\)
Thấy - 4 < 0
Nên để \(-\dfrac{4}{x+1}< 0\) <=> x + 1 > 0 ( TH A, B trái dấu )
Vậy ...
a) \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)
Ta có \(x^2+1\ge1>0\forall x\)
Để bpt < 0 => 2x( 3x - 5 ) < 0
Xét hai trường hợp :
1/ \(\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}\Rightarrow}0< x< \frac{5}{3}\)
2. \(\hept{\begin{cases}2x< 0\\3x-5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}}\)( loại )
Vậy nghiệm của bất phương trình là 0 < x < 5/3
b) \(\frac{x}{x-2}+\frac{x+2}{x}>2\)( ĐKXĐ : \(x\ne0,x\ne2\))
<=> \(\frac{x}{x-2}+\frac{x+2}{x}-2>0\)
<=> \(\frac{x^2}{x\left(x-2\right)}+\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}-\frac{2x\left(x-2\right)}{x\left(x-2\right)}>0\)
<=> \(\frac{x^2+x^2-4-2x^2+4x}{x\left(x-2\right)}>0\)
<=> \(\frac{4x-4}{x\left(x-2\right)}>0\)
\(x\left(x-2\right)>0\Leftrightarrow\orbr{\begin{cases}x>2\\x< 0\end{cases}}\)
\(x\left(x-2\right)< 0\Leftrightarrow0< x< 2\)
Xét các trường hợp
1/ \(\hept{\begin{cases}4x-4>0\\x\left(x-2\right)>0\end{cases}}\)
+) \(\hept{\begin{cases}4x-4>0\\x>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>2\end{cases}}\Leftrightarrow x>2\)
+) \(\hept{\begin{cases}4x-4>0\\x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x< 0\end{cases}}\)( loại )
2/ \(\hept{\begin{cases}4x-4< 0\\x\left(x-2\right)< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\0< x< 2\end{cases}}\Rightarrow0< x< 1\)
Vậy nghiệm của bất phương trình là x > 2 hoặc 0 < x < 1
c) \(\frac{2x-3}{x+5}\ge3\)( ĐKXĐ : \(x\ne-5\))
\(\Leftrightarrow\frac{2x-3}{x+5}-3\ge0\)
\(\Leftrightarrow\frac{2x-3}{x+5}-\frac{3\left(x+5\right)}{\left(x+5\right)}\ge0\)
\(\Leftrightarrow\frac{2x-3-3x-15}{x+5}\ge0\)
\(\Leftrightarrow\frac{-x-18}{x+5}\ge0\)
Xét hai trường hợp
1/ \(\hept{\begin{cases}-x-18\ge0\\x+5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-18\\x>-5\end{cases}}\)( loại )
2/ \(\hept{\begin{cases}-x-18\le0\\x+5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-18\\x< -5\end{cases}}\Leftrightarrow-18\le x< -5\)
Vậy nghiệm của bất phương trình là \(-18\le x< -5\)
d) \(\frac{x-1}{x-3}>1\)( ĐKXĐ : \(x\ne3\))
\(\Leftrightarrow\frac{x-1}{x-3}-1>0\)
\(\Leftrightarrow\frac{x-1}{x-3}-\frac{x-3}{x-3}>0\)
\(\Leftrightarrow\frac{x-1-x+3}{x-3}>0\)
\(\Leftrightarrow\frac{2}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
Vậy nghiệm của bất phương trình là x > 3
a) Ta có: \(3\left(x-2\right)-\left(x-5\right)>21\)
\(\Leftrightarrow3x-6-x+5>21\)
\(\Leftrightarrow2x-1>21\)
\(\Leftrightarrow2x>22\)
hay x>11
Vậy: S={x|x>11}
b) Ta có: \(5\left(x+1\right)-7\left(x-3\right)< 10\)
\(\Leftrightarrow5x+5-7x+21-10< 0\)
\(\Leftrightarrow-2x+16< 0\)
\(\Leftrightarrow-2x< -16\)
hay x>8
Vậy: S={x|x>8}