Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
| 2-4x | = 4x-2
<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)
<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)
<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)
=> \(S=\left\{\frac{1}{2};\infty\right\}\)
2x-7> 3(x-1)
<=>2x-7>3x-3
<=>2x-3x>-3+7
<=>-x>4
<=>x<4
=>S={x/x<4}
1-2x<4(3x-2)
<=>1-2x<12x-8
<=>-2x-12x<-8-1
<=>-14x<-9
<=>x>\(\frac{9}{14}\)
=>S={\(\frac{9}{14}\)}
-3x+2|-4 -x|> 0
<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)
<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)
=>S={x/x<3;x/x<\(\frac{1}{4}\)}
4x-1|x-2|< 0
<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)
<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)
=>S={x/x<\(\frac{-1}{3}\);x/x<1}
a) 3(x-2)(x+2) < 3x2 + x
3(x2 + 2x - 2x - 4 ) < 3x2 + x
<=> 3x2 + 6x - 6x - 12 < 3x2 + x
<=> 3x2 + 6x - 6x - 3x2 - x < 12
<=> x > -12
Vậy bpt có nghiệm là x > -12.
b) ( x+4 )(5x-1) > 5x2 + 16x + 2
<=> 5x2 - x + 20x - 4 - 5x2 - 16x - 2 > 0
<=> 5x2 - x + 20x - 5x2 - 16x > 2 + 4
<=> 3x > 6
<=> x > 2
Vậy btp có nghiệm là x > 2
Giải:
a) \(3\left(x-2\right)\left(x+2\right)< 3x^2+x\)
\(\Leftrightarrow3\left(x^2-4\right)< 3x^2+x\)
\(\Leftrightarrow3x^2-12< 3x^2+x\)
\(\Leftrightarrow-12< x\)
\(\Leftrightarrow x>-12\)
Vậy ...
b) \(\left(x+4\right)\left(5x-1\right)>5x^2+16x+2\)
\(\Leftrightarrow5x^2+20x-x-4>5x^2+16x+2\)
\(\Leftrightarrow5x^2+19x-4>5x^2+16x+2\)
\(\Leftrightarrow3x-4>2\)
\(\Leftrightarrow3x>6\)
\(\Leftrightarrow x>2\)
Vậy ...