K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

\(\left(x+1\right)\left(x-3\right)< 2\sqrt{x^2-2x-3}+3\)

\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)< 2\sqrt{x^2-2x-3}+3\)

\(\Leftrightarrow x^2+x-3x-3< 2\sqrt{x^2-2x-3}+3\)

\(\Leftrightarrow x^2-2x-3< 2\sqrt{x^2-2x-3}+3\) (1)

Đặt \(t=\sqrt{x^2-2x-3}\) ( điều kiện \(t\ge0\) )

\(\Rightarrow bpt\left(1\right)\Leftrightarrow t^2< 2t+3\)

\(\Leftrightarrow t^2-2t-3< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}t< -1\left(loại\right)\\t>3\left(nhận\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{x^2-2x-3}>3\)

\(\Leftrightarrow x^2-2x-3>9\)

\(\Leftrightarrow x^2-2x-12>0\)

\(\Leftrightarrow x\in\left(-\infty;1-\sqrt{13}\right)\cup\left(1+\sqrt{13};+\infty\right)\)

Vậy nghiệm của bất phương trình \(x\in\left(-\infty;1-\sqrt{13}\right)\cup\left(1+\sqrt{13};+\infty\right)\)

17 tháng 12 2016

2) ĐK: \(x^2+5x+2\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\le\frac{-5-\sqrt{17}}{2}\\x\ge\frac{-5+\sqrt{17}}{2}\end{array}\right.\)

bpt \(\Leftrightarrow x^2+5x+4-3\sqrt{x^2+5x+2}< 6\)

Đặt \(t=\sqrt{x^2+5x+2}\left(t\ge0\right)\) , bất pt trở thành:

\(t^2+2-3t< 6\Leftrightarrow t^2-3t-4< 0\Leftrightarrow-1< t< 4\)

Kết hợp điều kiện được: \(0\le t< 4\Rightarrow0\le\sqrt{x^2+5x+2}< 4\Leftrightarrow x^2+5x+2< 16\)

\(\Leftrightarrow x^2+5x-14< 0\Leftrightarrow-7< x< 2\)

Kết hợp điều kiện, bất pt đã cho có tập nghiệm:

(-7; \(\frac{-5-\sqrt{17}}{2}\)] \(\cup\) [ \(\frac{-5+\sqrt{17}}{2}\); 2)

7 tháng 4 2017

a) 3x^3 -10x+3 =(3x-1)(x-3)

x -vc 1/3 5/4 3 +vc
3x-1 - 0 + + + + +
x-3 - - - - - 0 +
4x-5 - - - 0 + + +
VT - 0 + 0 - 0 +

Kết luận

VT< 0 {dấu "-"} khi x <1/3 hoắc 5/4<x<3

VT>0 {dấu "+"} khi x 1/3<5/4 hoặc x> 3

VT=0 {không có dấu} khi x={1/3;5/4;3}

24 tháng 2 2016

Ta có \(a=-5<0;\Delta'=16>0;x_1=-\frac{3}{5};x_2=1\)

Bảng xét dấu :

\(x\)\(-\infty\)             \(-\frac{3}{5}\)                  1                   \(+\infty\)
\(f\left(x\right)\)              -           0        +                   -

Từ bảng xét, ta được :

\(T\left(f\left(x\right)=0\right)=\left\{-\frac{3}{5};1\right\}\) ; \(T\left(f\left(x\right)\ne0\right)=R\)\(\left\{-\frac{3}{5};1\right\}\)

\(T\left(f\left(x\right)>0\right)=\left\{-\frac{3}{5};1\right\}\) ; \(T\left(f\left(x\right)\ge0\right)=\left[-\frac{3}{5};1\right]\)

Từ : \(T\left(f\left(x\right)<0\right)=\left(-\infty;-\frac{3}{5}\right)\cup\left(1;+\infty\right)\) ; \(T\left(f\left(x\right)\le0\right)=\left(-\infty;-\frac{3}{5}\right)\cup\left(1;+\infty\right)\)