Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+\frac{1}{9}\right)\left(2x-5\right)< 0\)
TH1 : \(\hept{\begin{cases}x+\frac{1}{9}>0\\2x-5< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{-1}{9}\\x< \frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\frac{-1}{9}< x< \frac{5}{2}\)( thỏa )
TH2 : \(\hept{\begin{cases}x+\frac{1}{9}< 0\\2x-5>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< -\frac{1}{9}\\x>\frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\frac{5}{2}< x< -\frac{1}{9}\)( loại )
Vậy....
b) \(x^2-6x+9< 0\)
\(\Leftrightarrow\left(x-3\right)^2< 0\)( vô lý )
Vậy bpt vô nghiệm
\(mx.\left(x+1\right)>mx.\left(x+m\right)+m^2-1\Leftrightarrow mx^2+mx>mx^2+m^2x+m^2-1\Leftrightarrow mx>m^2x+m^2-1\\ \).
\(\Leftrightarrow mx-m^2x-m^2+1>0\Leftrightarrow mx.\left(1-m\right)+\left(1-m\right).\left(1+m\right)>0\)
\(\Leftrightarrow\left(1-m\right).\left(mx+1+m\right)>0\)
+ Nếu \(m>1\Rightarrow1-m< 0\Rightarrow mx+1+m< 0\Leftrightarrow m.\left(x+1\right)< -1\)
Mà \(m>1\Rightarrow x+1< -\frac{1}{1}=-1\Leftrightarrow x< -2\)
+ Nếu m<1 thì làm tiếp
Điều kiện xác định:
\(-m^2-4m-2\ge0\)
\(\Leftrightarrow-2-\sqrt{2}\le m\le-2+\sqrt{2}\)
Ta có:
\(-\left(m+1\right)^2+\sqrt{-m^2-4m-2}\)
\(=-\left(m+1\right)^2+\sqrt{2-\left(m+2\right)^2}< \sqrt{2}< 9\)
Vậy bất trên đúng với mọi m có nghĩa hay \(-2-\sqrt{2}\le m\le-2+\sqrt{2}\)