K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

ĐKXĐ: x ≥ 3 hoặc x ≤ -3

bpt \(\Leftrightarrow\sqrt{\left(x+1\right)\left(x-3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}\ge\sqrt{\left(x+1\right)\left(x+3\right)}\)

11 tháng 2 2019

À quên, tới đây mọi người hay chia cả 2 vế cho \(\sqrt{x+1}\), nhưng x + 1 chưa chắc đã không âm đâu nha !

9 tháng 5 2016

Điều kiện \(x^2-2x\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) khi đó :

Bất phương trình \(\Leftrightarrow3^{\sqrt{x^2-2x}}\ge\left(3\right)^{\sqrt{\left(x-1\right)^2}-x}\Leftrightarrow\sqrt{x^2-2x}\ge\left|x-1\right|-x\)

- Khi \(x\ge2\Rightarrow x-1>0\) nên bất phương trình \(\sqrt{x^2-2x}\ge-1\) đúng với mọi \(x\ge2\)

- Khi \(x\le0\Rightarrow x-1< 0\) nên bất phương trình \(\sqrt{x^2-2x}\ge1-2x\)

                                                                 \(\Leftrightarrow\begin{cases}x^2-2x\ge1-4x+4x^2\\x\le0\end{cases}\) vô nghiệm

Vậy tập nghiệm của bất phương trình là : S = [2;\(+\infty\) )

 

5 tháng 4 2016

Điều kiện xác định : \(x\ge1+\sqrt{3}\)

Với điều kiện đó, bất phương trình trở thành : \(x^2+2x-2+2\sqrt{x\left(x+1\right)\left(x-2\right)}\ge3\left(x^2-2x-2\right)\left(2\right)\)

\(\Leftrightarrow\sqrt{x\left(x-2\right)\left(x+1\right)}\ge x\left(x-2\right)-2\left(x+1\right)\)

\(\Leftrightarrow\left(\sqrt{x\left(x-2\right)}-2\sqrt{x+1}\right)\left(\sqrt{x\left(x-2\right)}+\sqrt{x+1}\right)\le0\) (3)

Do với mọi x thỏa mãn (1) , ta có \(\sqrt{x\left(x-2\right)}+\sqrt{x+1}>0\) nên

(3) \(\Leftrightarrow\sqrt{x\left(x-2\right)}\le2\sqrt{x+1}\)

     \(\Leftrightarrow x^2-6x-4\le0\)

     \(\Leftrightarrow3-\sqrt{13}\le x\le3+\sqrt{13}\) (4)

Kết hợp (1) và (4) ta được tập nghiệm của bất phương trình đã cho là :

\(\left[1+\sqrt{3};3+\sqrt{13}\right]\)

3 tháng 3 2019

1.ĐK: \(x\ge\dfrac{1}{4}\)

bpt\(\Leftrightarrow5x+1+4x-1-2\sqrt{20x^2-x-1}< 9x\)

\(\Leftrightarrow2\sqrt{20x^2-x-1}>0\)

\(\Leftrightarrow20x^2-x-1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{-1}{5}\\x>\dfrac{1}{4}\end{matrix}\right.\)

2.ĐK: \(-2\le x\le\dfrac{5}{2}\)

bpt\(\Leftrightarrow x+2+3-x-2\sqrt{-x^2+x+6}< 5-2x\)

\(\Leftrightarrow2x< 2\sqrt{-x^2+x+6}\)

\(\Leftrightarrow x^2< -x^2+x+6\)

\(\Leftrightarrow-2x^2+x+6>0\)

\(\Leftrightarrow\dfrac{-3}{2}< x< 2\)

3. ĐK: \(\left\{{}\begin{matrix}12+x-x^2\ge0\\x\ne11\\x\ne\dfrac{9}{2}\end{matrix}\right.\)

.bpt\(\Leftrightarrow\sqrt{12+x-x^2}\left(\dfrac{1}{x-11}-\dfrac{1}{2x-9}\right)\ge0\)

\(\Leftrightarrow\sqrt{-x^2+x+12}.\dfrac{x+2}{\left(x-11\right)\left(2x-9\right)}\ge0\)

\(\Rightarrow\dfrac{x+2}{\left(x-11\right)\left(2x-9\right)}\ge0\)

\(\Leftrightarrow\dfrac{x+2}{2x^2-31x+99}\ge0\)

*Xét TH1: \(\left\{{}\begin{matrix}x+2\ge0\\2x^2-31x+99>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\left[{}\begin{matrix}x< \dfrac{9}{2}\\x>11\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-2\le x< \dfrac{9}{2}\\x>11\end{matrix}\right.\)

*Xét TH2: \(\left\{{}\begin{matrix}x+2\le0\\2x^2-31x+99< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le-2\\\dfrac{9}{2}< x< 11\end{matrix}\right.\)\(\Rightarrow\dfrac{9}{2}< x< 11\)

NV
24 tháng 2 2020

a/ \(-1\le x\le1\)

\(\Leftrightarrow\frac{2x}{\sqrt{1+x}+\sqrt{1-x}}-x\ge0\)

\(\Leftrightarrow x\left(\frac{2}{\sqrt{1+x}+\sqrt{1-x}}-1\right)\ge0\)

Do \(0< \sqrt{1+x}+\sqrt{1-x}\le\sqrt{2\left(1+x+1-x\right)}=2\)

\(\Rightarrow\frac{2}{\sqrt{1+x}+\sqrt{1-x}}\ge1\Rightarrow\frac{2}{\sqrt{1+x}+\sqrt{1-x}}-1\ge0\)

\(\Rightarrow x\ge0\)

Vậy nghiệm của BPT là \(0\le x\le1\)

b/ \(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}\ge2\sqrt{\left(x-1\right)\left(x-4\right)}\)

- Với \(x=1\) thỏa mãn

- Với \(x\ge4\Leftrightarrow\sqrt{x-2}+\sqrt{x-3}\ge2\sqrt{x-4}\)

\(\Leftrightarrow\sqrt{x-2}-\sqrt{x-4}+\sqrt{x-3}-\sqrt{x-4}\ge0\)

\(\Leftrightarrow\frac{2}{\sqrt{x-2}+\sqrt{x-4}}+\frac{1}{\sqrt{x-3}+\sqrt{x-4}}\ge0\) (luôn đúng)

- Với \(x< 1\Rightarrow\sqrt{2-x}+\sqrt{3-x}\ge2\sqrt{4-x}\)

Tương tự bên trên ta có BPT luôn sai

Vậy nghiệm của BPT đã cho là \(\left[{}\begin{matrix}x=1\\x\ge4\end{matrix}\right.\)

NV
7 tháng 3 2020

1.

a/ ĐKXĐ: \(-1\le x\le5\)

\(\Leftrightarrow\sqrt{x+3}\le\sqrt{5-x}+\sqrt{x+1}\)

\(\Leftrightarrow x+3\le6+2\sqrt{\left(5-x\right)\left(x+1\right)}\)

\(\Leftrightarrow x-3\le2\sqrt{-x^2+4x+5}\)

- Với \(x< 3\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge3\) cả 2 vế ko âm, bình phương:

\(x^2-6x+9\le-4x^2+16x+20\)

\(\Leftrightarrow5x^2-22x-11\le0\) \(\Rightarrow\frac{11-4\sqrt{11}}{5}\le x\le\frac{11+4\sqrt{11}}{5}\)

\(\Rightarrow3\le x\le\frac{11+4\sqrt{11}}{5}\)

Vậy nghiệm của BPT đã cho là \(-1\le x\le\frac{11+4\sqrt{11}}{5}\)

NV
7 tháng 3 2020

1b/

Đặt \(\sqrt{2x^2+8x+12}=t\ge2\)

\(\Rightarrow x^2+4x=\frac{t^2}{2}-6\)

BPT trở thành:

\(\frac{t^2}{2}-12\ge t\Leftrightarrow t^2-2t-24\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\le-4\left(l\right)\\t\ge6\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+8x+12}\ge6\)

\(\Leftrightarrow2x^2+8x-24\ge0\Rightarrow\left[{}\begin{matrix}x\le-6\\x\ge2\end{matrix}\right.\)