K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

TH1: \(x^2-4x-3\le0\Leftrightarrow2-\sqrt{7}\le x\le2+\sqrt{7}\)

bpt <=> \(-x^2+4x+3>-x^2+4x+3\) vô lí

TH2: \(x^2-4x-3>0\Leftrightarrow\orbr{\begin{cases}x>2+\sqrt{7}\\x< 2-\sqrt{7}\end{cases}}\)

bpt <=> \(x^2-4x-3>-x^2+4x+3\)

<=> \(x^2-4x-3>0\)

Đúng với \(\orbr{\begin{cases}x>2+\sqrt{7}\\x< 2-\sqrt{7}\end{cases}}\)

Vậy:...

1 tháng 5 2020

Cho bất phương trình x2-2mx+2|x-m|-m2+2>0

Tìm m để bất phương trình nghiệm đúng với mọi x thuộc R

NV
1 tháng 5 2020

Đặt \(x^2-4x-3=t\)

\(\Leftrightarrow\left|t\right|>-t\Leftrightarrow t>0\)

\(\Leftrightarrow x^2-4x-3>0\Rightarrow\left[{}\begin{matrix}x< 2-\sqrt{7}\\x>2+\sqrt{7}\end{matrix}\right.\)

NV
15 tháng 4 2020

a/ \(\Leftrightarrow\left(x^2+4x+3\right)^2>\left(x^2-4x-5\right)^2\)

\(\Leftrightarrow\left(x^2+4x+3\right)^2-\left(x^2-4x-5\right)^2>0\)

\(\Leftrightarrow\left(8x-8\right)\left(2x^2-2\right)>0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)^2>0\)

\(\Rightarrow\left\{{}\begin{matrix}x>-1\\x\ne1\end{matrix}\right.\)

b/ \(\left|x^2-3x+2\right|-x^2+2x>0\)

- Với \(1< x< 2\Rightarrow x^2-3x+2< 0\) BPT tương đương:

\(-x^2+3x-2-x^2+2x>0\)

\(\Leftrightarrow-2x^2+5x-2>0\Rightarrow\frac{1}{2}< x< 2\Rightarrow1< x< 2\)

- Với \(\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\) BPT tương đương:

\(x^2-3x+2-x^2+2x>0\)

\(\Leftrightarrow-x+2>0\Rightarrow x< 2\Rightarrow x\le1\)

Vậy nghiệm của BPT đã cho là \(x< 2\)

30 tháng 4 2016

mình làm cho bạn 3 lần mà lúc gửi thì bị mất mạng  khocroi

30 tháng 4 2016

Chờ tí mình làm cho

c: \(\Leftrightarrow\left\{{}\begin{matrix}4x+3>=0\\\left(x+2-4x-3\right)\left(x+2+4x+3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{3}{4}\\\left(-3x-1\right)\left(5x+5\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{3}{4}\\\left(3x+1\right)\left(x+1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow x>-\dfrac{1}{3}\)

d: \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-2< 0\\2x+1>=0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-2>=0\\\left(2x+1-3x+2\right)\left(2x+1+3x-2\right)>=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{2}{3}\\x>-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(-x+3\right)\left(5x-1\right)>=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< x< \dfrac{2}{3}\\\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(x-3\right)\left(5x-1\right)< =0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{2}< x< \dfrac{2}{3}\\\dfrac{2}{3}< =x< =3\end{matrix}\right.\)

NV
8 tháng 3 2020

1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)

\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)

2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)

\(\Rightarrow\frac{3}{2}< x< 2\)

3. \(\Leftrightarrow\left(5x-3\right)^2>0\)

\(\Rightarrow x\ne\frac{3}{5}\)

4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)

\(\Rightarrow x\in R\)

5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)

\(\Rightarrow x\in R\)

NV
8 tháng 3 2020

6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)

\(\Rightarrow-2\le x\le-\frac{7}{8}\)

7.

\(\Leftrightarrow\left(x-1\right)^2+2>0\)

\(\Rightarrow x\in R\)

8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)

9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)

\(\Rightarrow-6< x< -3\)

10. \(\Leftrightarrow x^2-6x+9>0\)

\(\Leftrightarrow\left(x-3\right)^2>0\)

\(\Rightarrow x\ne3\)

NV
27 tháng 9 2020

Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\):

\(x^2+\frac{1}{x^2}-4\left(x+\frac{1}{x}\right)+5=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\) pt trở thành:

\(t^2-2-4t+5=0\)

\(\Leftrightarrow t^2-4t+3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=1\\x+\frac{1}{x}=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=0\\x^2-3x+1=0\end{matrix}\right.\)

29 tháng 10 2016

x=1 hoặc x=1,57

10 tháng 3 2017

bạn giải chi tiết đi