K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2023

\(x-8\ge2\left(\dfrac{x+1}{2}\right)+7\)

\(x-8\ge x+1+7\)

\(x-x\ge1+7+8\)

\(0x\ge16\)(vô lí)

Tập nghiệm của bất phương trình là :

\(S=\left\{\varnothing\right\}\)

 

 

5 tháng 4 2023

\(x-8\ge2\left(x+\dfrac{1}{2}\right)+7\)
\(\Leftrightarrow x-8\ge2x+1+7\)
\(\Leftrightarrow-x\ge16\Leftrightarrow x\le-16\)
tập nghiệm của phương trình: S={ x | x \(\le-16\) }
0 -16

Ta có: \(x^2< 9\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3< x\\x< 3\end{matrix}\right.\Leftrightarrow-3< x< 3\)

5 tháng 8 2021

Sao lại là -3<x ạ ?

 

=>2x^2-3x-4x+6+3x+8<2x^2+4x+2-4x

=>2x^2-4x+14<2x^2+2

=>-4x<-12

=>x>3

28 tháng 4 2019

\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)

\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)

\(\Leftrightarrow6x+24+9x+6< 10x-10\)

\(\Leftrightarrow5x+40< 0\)

\(\Leftrightarrow x< -8\)

Tự biểu diễn nha bạn

28 tháng 4 2019

\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)

\(\Rightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)

\(\Rightarrow6x+24+9x+6< 10x-10\)

\(5x< -40\)

\(\Rightarrow x< -8\)

`(x+4)/5 - (x-2)/3 > 2`

`=> (3x+12 - 5x + 10)/15 > 2`

`=> 24 - 2x > 30`

`=> -2x > 6`

`=> x < -3`.

14 tháng 5 2022

Kinh qué mưới on hoc24 có 6 ngày mà đã lên \(\text{trung úy}\) :3

18 tháng 4 2023

\(\dfrac{x-2}{2}+1\le\dfrac{x-1}{3}\)

\(\Leftrightarrow\dfrac{3\left(x-2\right)}{6}+\dfrac{1.6}{6}\le\dfrac{2\left(x-1\right)}{6}\)

`<=> 3x - 6 + 6 <= 2x-2`

`<=> 3x <= 2x-2`

`<=> 3x -2x <= -2`

`<=> x  <= -2`

loading...

18 tháng 4 2023

\(\dfrac{x-2}{2}\)+1≤\(\dfrac{x-1}{3}\)

<=>\(\dfrac{3x-6}{6}\)+\(\dfrac{6}{6}\)\(\dfrac{2x-1}{6}\)

<=>3x-6+6≤2x-1

<=>x<-1

a: 2x-1>=5

nên 2x>=6

hay x>=3

b: \(\dfrac{x-2}{3}>=x-\dfrac{x-1}{2}\)

=>2x-4>=6x-3(x-1)

=>2x-4>=6x-3x+3

=>2x-4>=3x+3

=>-x>=7

hay x<=-7

12 tháng 5 2022

a.\(2x-1\ge5\)

\(\Leftrightarrow2x\ge6\)

\(\Leftrightarrow x\ge3\)

Vậy \(S=\left\{x|x\ge3\right\}\)

b.\(\dfrac{x-2}{3}\ge x-\dfrac{x-1}{2}\)

\(\Leftrightarrow\dfrac{2\left(x-2\right)}{6}\ge\dfrac{6x-3\left(x-1\right)}{6}\)

\(\Leftrightarrow2\left(x-2\right)\ge6x-3\left(x-1\right)\)

\(\Leftrightarrow2x-4\ge6x-3x+3\)

\(\Leftrightarrow-x\ge7\)

\(\Leftrightarrow x\le7\)

Vậy \(S=\left\{x|x\le7\right\}\)