Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\ge9\Rightarrow x+9\ge18\Rightarrow\sqrt{x+9}\ge3\sqrt{2}\)
nguyễn thị thanh huyền
b/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-\frac{2}{3}\\x\le-1\end{matrix}\right.\)
Đặt \(3x^2+5x+2=t\ge0\)
\(\Leftrightarrow\sqrt{t+5}-\sqrt{t}>1\)
\(\Leftrightarrow\sqrt{t+5}>\sqrt{t}+1\)
\(\Leftrightarrow t+5>t+1+2\sqrt{t}\)
\(\Leftrightarrow\sqrt{t}< 2\Rightarrow t< 4\)
\(\Rightarrow3x^2+5x+2< 4\)
\(\Leftrightarrow3x^2+5x-2< 0\) \(\Rightarrow-2< x< \frac{1}{3}\)
Kết hợp ĐKXĐ ta được nghiệm của BPT:
\(\left[{}\begin{matrix}-2< x\le-1\\-\frac{2}{3}\le x< \frac{1}{3}\end{matrix}\right.\)
a) Đặt \(a=\sqrt[3]{1+\sqrt{x}};b=\sqrt[3]{1-\sqrt{x}}\)
\(\Rightarrow a^3+b^3=2\) kết hợp với đề bài
\(\Rightarrow\left\{{}\begin{matrix}a^3+b^3=2\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)\left(a^2-ab+b^2\right)=2\\a+b=2\end{matrix}\right.\)
................
ĐKXĐ: \(x>\dfrac{1}{5}\)
\(1-3x^2< \left(x+2\right)\sqrt[]{5x-1}+5x-1\)
\(\Leftrightarrow3x^2+5x-2+\left(x+2\right)\sqrt{5x-1}\ge0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-1\right)+\left(x+2\right)\sqrt{5x-1}>0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-1+\sqrt{5x-1}\right)>0\)
\(\Leftrightarrow3x-1+\sqrt{5x-1}>0\)
\(\Leftrightarrow\sqrt{5x-1}>1-3x\)
TH1: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{5}\\1-3x< 0\end{matrix}\right.\) \(\Leftrightarrow x>\dfrac{1}{3}\)
TH2: \(\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\5x-1>9x^2-6x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\9x^2-11x+2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{2}{9}< x\le\dfrac{1}{3}\)
Kết luận: \(x>\dfrac{2}{9}\)
a) \(\sqrt{5x+3}=3x-7\)\(\Leftrightarrow\left\{{}\begin{matrix}5x+3=\left(3x-7\right)^2\\3x-7\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x+3=9x^2-42x+49\\x\ge\dfrac{7}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}9x^2-47x+46=0\\x\ge\dfrac{7}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{47+\sqrt{553}}{18}\\x=\dfrac{47-\sqrt{553}}{18}\end{matrix}\right.\\x\ge\dfrac{7}{3}\end{matrix}\right.\)\(\Leftrightarrow\dfrac{47+\sqrt{553}}{18}\).
b) \(\sqrt{3x^2-2x-1}=3x+1\)\(\Leftrightarrow\left\{{}\begin{matrix}3x^2-2x-1=\left(3x+1\right)^2\\3x+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x^2+8x+2=0\\x\ge\dfrac{-1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-1\end{matrix}\right.\\x\ge-\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow x=-\dfrac{1}{3}\).
a/ đk: \(\left[{}\begin{matrix}x\le\frac{-5-3\sqrt{5}}{10}\\x\ge\frac{-5+3\sqrt{5}}{10}\end{matrix}\right.\)\(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)
\(\Leftrightarrow\sqrt{x^2+x+1}+\sqrt{3\left(x^2+x+1\right)-1}=\sqrt{5\left(x^2+x+1\right)-6}\)
đặt\(x^2+x+1=t\left(t>0\right)\)
\(\sqrt{t}+\sqrt{3t-1}=\sqrt{5t-6}\)
bình phương 2 vế pt trở thành:
\(t+3t-1+2\sqrt{t\left(3t-1\right)}=5t-6\)
\(\Leftrightarrow2\sqrt{3t^2-t}=t-5\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left(2\sqrt{3t^2-t}\right)^2=\left(t-5\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\11t^2+6t-25=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left[{}\begin{matrix}t=\frac{-3+2\sqrt{71}}{11}\\t=\frac{-3-2\sqrt{71}}{11}\end{matrix}\right.\end{matrix}\right.\)=> không có gtri t nào t/m
vậy pt vô nghiệm
a/ ĐKXĐ: ...
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a}+\sqrt{3a-1}=\sqrt{5a-6}\)
\(\Leftrightarrow4a-1+2\sqrt{3a^2-a}=5a-6\)
\(\Leftrightarrow2\sqrt{3a^2-a}=a-5\) (\(a\ge5\))
\(\Leftrightarrow4\left(3a^2-a\right)=a^2-10a+25\)
\(\Leftrightarrow11a^2+6a-25=0\)
Nghiệm xấu quá, chắc bạn nhầm lẫn đâu đó
b/
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)
\(\Leftrightarrow2a+3+2\sqrt{a^2+3a}=2a+7\)
\(\Leftrightarrow\sqrt{a^2+3a}=2\)
\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\)