Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(x+3\right)-100\)
\(\Leftrightarrow20x^2-12+15x-5< 10x^2+30x-100\)
\(\Leftrightarrow10x^2-15x+83< 0\)
\(\Leftrightarrow10\left(x-\frac{3}{4}\right)^2+\frac{619}{8}< 0\)
Bất phương trình vô nghiệm
a: \(x>3:\dfrac{1}{2}=6\)
b: \(x>-2:\left(-\dfrac{1}{3}\right)=6\)
c: \(x>-4:\dfrac{2}{3}=-6\)
d: \(x< -6:\dfrac{3}{5}=-10\)
a) \(x^2\) - x( x - 3) > 2x + 5
<=> \(x^2\) - \(x^2\) + 3x > 2x +5
<=> x > 5
Vậy bất phương trình có nghiệm x > 5.
Biểu diễn:
0 5
b) \(\dfrac{x\left(2x-1\right)}{12}\) - \(\dfrac{x}{8}\)< \(\dfrac{x^2-1}{6}\) - \(\dfrac{x+4}{24}\)
<=> \(\dfrac{4x^2-2x-3x}{24}\)<\(\dfrac{4x^2-4-x-4}{24}\)
<=> \(4x^2\) - 2x - 3x < \(4x^2\) - 4 - x -4
<=> -4x< -8
<=> x>2
Vậy bất phương trình có nghiệm x>2.
Biểu diễn:
0 2
a) \(\dfrac{1-2x}{4}-2< \dfrac{1-5x}{8}\\ < =>\dfrac{2-4x}{8}-\dfrac{16}{8}< \dfrac{1-5x}{8}\\ < =>2-4x-16< 1-5x\\ < =>-4x+5x< 1-2+16\\ < =>x< 15\)
Vậy : tập nghiệm của bất phương trình là S= \(\left\{x|x< 15\right\}\)
b) \(\dfrac{x-1}{4}-1>\dfrac{x+1}{3}+8\\ < =>\dfrac{3x-3}{12}-\dfrac{12}{12}>\dfrac{4x+4}{12}+\dfrac{96}{12}\\ < =>3x-3-12>4x+4+96\\ < =>3x-4x>4+96+3+12\\ < =>-x>115\\ =>x< -115\)
Vậy: tập nghiệm của bất phương trình là S=\(\left\{x|x< -115\right\}\)
a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)
\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)
=>3x+5<10x-30
=>-7x<-35
hay x>5
b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)
=>14x-80>-11x
=>25x>80
hay x>16/5
a: (x-3)(x-2)<0
=>x-2>0 và x-3<0
=>2<x<3
b: \(\left(x+3\right)\left(x+4\right)\left(x^2+2\right)\ge0\)
\(\Leftrightarrow\left(x+3\right)\left(x+4\right)\ge0\)
=>x>=-3 hoặc x<=-4
c: \(\dfrac{x-1}{x-2}\ge0\)
nên \(\left[{}\begin{matrix}x-2>0\\x-1\le0\end{matrix}\right.\Leftrightarrow x\in(-\infty;1]\cup\left(2;+\infty\right)\)
d: \(\dfrac{x+3}{2-x}\ge0\)
\(\Leftrightarrow\dfrac{x+3}{x-2}\le0\)
hay \(x\in[-3;2)\)
=>(x+2-x-3)/(x+3)<0
=>-1/x+3<0
=>x+3>0
=>x>-3
ko hiểu là sao