Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2-10x+25}=7-2x=>\sqrt{\left(x-5\right)^2}=7-2x=>!x-5!=7-2x\)
\(x-5=7-2x\left(x>=5\right)=>3x=7+5=>x=4\)
\(5-x=7-2x\left(x<5\right)=>2x-x=7-5=>x=2\)
a) \(\sqrt{2x-1}=\sqrt{5}\)
ĐK : \(x\ge\frac{1}{2}\)
Bình phương hai vế
pt <=> \(2x-1=25\)
<=> \(2x=26\)
<=> \(x=13\left(tm\right)\)
Vậy S = { 13 }
b) \(\sqrt{4-5x}=12\)
ĐK : \(x\le\frac{4}{5}\)
Bình phương hai vế
pt <=> \(4-5x=144\)
<=> \(-5x=140\)
<=> \(x=-28\left(tm\right)\)
Vậy S = { -28 }
c) \(\sqrt{x^2+6x+9}=3x-1\)< chắc hẳn là như này :]>
<=> \(\sqrt{\left(x+3\right)^2}=3x-1\)
<=> \(\left|x+3\right|=3x-1\)
<=> \(\orbr{\begin{cases}x+3=3x-1\left(x\ge-3\right)\\-3-x=3x-1\left(x< -3\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\left(tm\right)\\x=-\frac{1}{2}\left(ktm\right)\end{cases}}\)
Vậy S = { 2 }
d) \(2\sqrt{x}\le\sqrt{10}\)
ĐK : \(x\ge0\)
Bình phương hai vế
bpt <=> \(4x\le10\)
<=> \(x\le\frac{10}{4}\)
Kết hợp với ĐK => Nghiệm của bất phương trình là \(0\le x\le\frac{10}{4}\)
a) \(ĐKXĐ:x\ge\frac{1}{2}\)
\(\sqrt{2x-1}=\sqrt{5}\)\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x-1=5\)\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=3\)
b) \(ĐKXĐ:x\le\frac{4}{5}\)
\(\sqrt{4-5x}=12\)\(\Leftrightarrow4-5x=144\)( bình phương 2 vế )
\(\Leftrightarrow5x=-140\)\(\Leftrightarrow x=-28\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=-28\)
c) \(ĐKXĐ:x\ge\frac{1}{3}\)
\(\sqrt{x^2+6x+9}=3x-1\)
\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)
\(\Leftrightarrow\left|x+3\right|=3x-1\)
+) TH1: Nếu \(x+3< 0\)\(\Leftrightarrow x< -3\)
thì \(\left|x+3\right|=-\left(x+3\right)=-x-3\)
\(\Rightarrow-x-3=3x-1\)\(\Leftrightarrow4x=-2\)
\(\Leftrightarrow x=\frac{-1}{2}\)( không thỏa mãn ĐKXĐ )
+) TH2: \(x+3\ge0\)\(\Rightarrow x\ge-3\)
thì \(\left|x+3\right|=x+3\)
\(\Rightarrow x+3=3x-1\)\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=2\)
\(x-9\sqrt{x}+14=0\Leftrightarrow x-2\sqrt{x}-7\sqrt{x}+14=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-7\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\\sqrt{x}-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=49\end{cases}}}\)
Vậy x = 4 hoặc x = 49
\(\sqrt{x^2-10x+25}=7-2x\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\)
\(\Leftrightarrow\left|x-5\right|=7-2x\)(1)
Nếu \(x-5\ge0\Rightarrow x\ge5\) thì (1) trở thành: x-5=7-2x <=> 3x=12 <=> x=4 (loại)
Nếu x - 5 < 0 => x < 5 thì (1) trở thành: -(x-5)=7-2x <=> -x+5=7-2x <=> x=2 (nhận)
Vậy x = 2
\(\sqrt{x-2}+\sqrt{2-x}=0\)
\(\Leftrightarrow\left(\sqrt{x-2}+\sqrt{2-x}\right)^2=0\)
\(\Leftrightarrow x-2+2\sqrt{\left(x-2\right)\left(2-x\right)}+2-x=0\)
\(\Leftrightarrow2\sqrt{4x-x^2-4}=0\)
\(\Leftrightarrow\left(\sqrt{4x-x^2-4}\right)^2=0\)
\(\Leftrightarrow4x-x^2-4=0\)
giải phương trình bình thường
\(\sqrt{x^2+x+1}=x+2\)
\(\Leftrightarrow\left(\sqrt{x^2}+x+1\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow x^2+x+1=x^2+4x+4\)
\(\Leftrightarrow-3x=3\)
\(\Leftrightarrow x=-1\)
Vậy x = -1
Bởi vì \(\sqrt{2x+1}\ge0\)mà \(x>\sqrt{2x+1}\)nên phải có điều kiện \(x>0\)
mk mới chỉ lên lớp 6.cậu ra đềlớp mấy dzậy??