Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(x+3\right)-100\)
\(\Leftrightarrow20x^2-12+15x-5< 10x^2+30x-100\)
\(\Leftrightarrow10x^2-15x+83< 0\)
\(\Leftrightarrow10\left(x-\frac{3}{4}\right)^2+\frac{619}{8}< 0\)
Bất phương trình vô nghiệm
ĐKXĐ: \(x\ne4\)
Ta có: \(\frac{2x}{x-4}< 2\)
\(\Leftrightarrow2x< 2\left(x-4\right)\)
\(\Leftrightarrow2x< 2x-8\)
\(\Leftrightarrow2x-2x+8< 0\)
hay 8<0(vô lý)
Vậy: \(S=\varnothing\)
a) \(\dfrac{1-2x}{4}-2< \dfrac{1-5x}{8}\\ < =>\dfrac{2-4x}{8}-\dfrac{16}{8}< \dfrac{1-5x}{8}\\ < =>2-4x-16< 1-5x\\ < =>-4x+5x< 1-2+16\\ < =>x< 15\)
Vậy : tập nghiệm của bất phương trình là S= \(\left\{x|x< 15\right\}\)
b) \(\dfrac{x-1}{4}-1>\dfrac{x+1}{3}+8\\ < =>\dfrac{3x-3}{12}-\dfrac{12}{12}>\dfrac{4x+4}{12}+\dfrac{96}{12}\\ < =>3x-3-12>4x+4+96\\ < =>3x-4x>4+96+3+12\\ < =>-x>115\\ =>x< -115\)
Vậy: tập nghiệm của bất phương trình là S=\(\left\{x|x< -115\right\}\)
a ) \(\dfrac{\left(x-3\right)^2}{3}-\dfrac{\left(2x-1\right)^2}{12}\le x\)
\(\Leftrightarrow4\left(x-3\right)^2-\left(2x-1\right)^2\le12x\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-12x\le0\)
\(\Leftrightarrow4x^2-24x+36-4x^2+4x-1-12x\le0\)
\(\Leftrightarrow-36x\le-35\)
\(\Leftrightarrow x\ge\dfrac{35}{36}\)
Vậy bất phương trình có nghiệm \(x\ge\dfrac{35}{36}\).
b ) \(2+\dfrac{3\left(x+1\right)}{3}< 3-\dfrac{x-1}{4}\)
\(\Leftrightarrow2+x+1< 3-\dfrac{x-1}{4}\)
\(\Leftrightarrow x+3< 3-\dfrac{x-1}{4}\)
\(\Leftrightarrow4\left(x+3\right)< 12-x+1\)
\(\Leftrightarrow4x+12+x< 13\)
\(\Leftrightarrow5x< 13-12\)
\(\Leftrightarrow5x< 1\)
\(\Leftrightarrow x< \dfrac{1}{5}\)
Vậy bất phương trình có nghiệm \(x< \dfrac{1}{5}\)
https://lazi.vn/edu/exercise/giai-phuong-trinh-x-1-x-22-x-1-x-4-32x-4-x-42-0-1
chỉ tiềm thấy cái này thôi ~ vì mk k thể giải đc nên nhờ mạng nên thông cảm cho nha
a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)
\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)
=>3x+5<10x-30
=>-7x<-35
hay x>5
b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)
=>14x-80>-11x
=>25x>80
hay x>16/5
a) với m = 1 thay vào phương trình thì phương trình trở thành
\(\left(x+1\right)\left(x-1\right)-\left(x-2\right)^2=5\Leftrightarrow x^2-1-x^2+4x-4-5=0\Leftrightarrow4x-10=0\Leftrightarrow x=\frac{5}{2}\)b) phương trình nhận x = - 3 là nghiệm thì ta thay x = -3 vào phương trình sẽ thỏa mãn
thay x = -3 vào phưowng trình trở thành:
\(\left(-3m+1\right)\times\left(-4\right)-m\left(-3-2\right)^2=5\)
\(\Leftrightarrow12m-4-m\left(-5\right)^2=5\Leftrightarrow-13m=9\Leftrightarrow m=\frac{-9}{13}\)
Vậy với m = -9/13 thì phương trình có nghiệm x=-3
\(\dfrac{x-3}{2+x}< 1\\ \Leftrightarrow\dfrac{x-3}{2+x}-1< 0\\ \Leftrightarrow\dfrac{x-3}{2+x}-\dfrac{2+x}{2+x}< 0\\ \Leftrightarrow\dfrac{x-3-2-x}{2+x}< 0\\ \Leftrightarrow\dfrac{-5}{2+x}< 0\)
Vì \(-5< 0\)
\(\Rightarrow2+x>0\\ \Rightarrow x>-2\)
Vậy \(x>-2\)