\(9^{-x^2+2x+1}-34.15^{2x-x^2}+25^{2x-x^2+1}\le0\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2016

Bất phương trình \(\Leftrightarrow9.9^{2x-x^2}-34.15^{2x-x^2}+25.25^{2x-x^2}\le0\)

                         \(\Leftrightarrow9\left(\frac{3}{5}\right)^{2\left(2x-x^2\right)}-34\left(\frac{3}{5}\right)^{2x-x^2}+25\le0\)

Đặt \(t=\left(\frac{3}{5}\right)^{2x-x^2},t>0\)

Ta có bất phương trình :

\(9t^2-34t+25\Leftrightarrow1\le t\le\frac{25}{9}\)

\(\Rightarrow\begin{cases}\left(\frac{3}{5}\right)^{2x-x^2}\ge1\\\left(\frac{3}{5}\right)^{2x-x^2}\le\left(\frac{3}{5}\right)^{-2}\end{cases}\)

\(\Leftrightarrow\begin{cases}2x-x^2\le0\\x^2-2x-2\le0\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) và \(1-\sqrt{3}\le x\le1+\sqrt{3}\)

Vậy tập nghiệm của bất phương trình là :

\(S=\left[1-\sqrt{3};0\right]\cup\left[2;1+\sqrt{3}\right]\)

27 tháng 2 2016

\(\Leftrightarrow\) \(\begin{cases}x\le1;2\le x\\-3\le x\le4\\x\le-2;2\le x\end{cases}\)  \(\Leftrightarrow\)  \(\begin{cases}-3\le x\le-2\\2\le x\le4\end{cases}\)

Vậy hệ đã cho có tập nghiệm T = \(\left[-3;-2\right]\cup\left[2;4\right]\)

11 tháng 1 2020
https://i.imgur.com/NIunWu5.jpg
5 tháng 4 2017

a)

\(\left\{{}\begin{matrix}x^2\ge\dfrac{1}{4}\left(1\right)\\x^2-x\le0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)x^2-0,25\Leftrightarrow\left[{}\begin{matrix}x\le-\dfrac{1}{2}\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

(2)\(x^2-x\le\) \(\Leftrightarrow0\le x\le1\)

Kết hợp (1) và (2) \(\Rightarrow\dfrac{1}{2}\le x\le1\)

b)

\(\left\{{}\begin{matrix}\left(x-1\right)\left(2x+3\right)>0\left(1\right)\\\left(x-4\right)\left(x+\dfrac{1}{4}\right)\le0\left(2\right)\end{matrix}\right.\)

Giải: \(\left(1\right)\left(x-1\right)\left(2x+3\right)>0\Leftrightarrow\left[{}\begin{matrix}x< -\dfrac{3}{2}\\x>1\end{matrix}\right.\)

Giải: (2) \(\left(x-4\right)\left(x+\dfrac{1}{4}\right)< 0\Leftrightarrow-\dfrac{1}{4}\le x\le4\)

Kết hợp điều kiện của (1) và (2) ta có:  (1;4] là nghiệm của hệ bất phương trình.

6 tháng 10 2023

Bất phương trình bậc nhất 2 ẩn :

 \(2x+3y>0\Rightarrow Câu\) \(C\)

 \(x-2y\le1\Rightarrow Câu\) \(f\)

\(4\left(x-1\right)+5\left(y-3\right)>2x-9\)

\(\Leftrightarrow4x-4+5y-15-2x+9>0\)

\(\Leftrightarrow2x+5y-10>0\) \(\Rightarrow Câu\) \(i\)

7 tháng 5 2016

Đặt \(2^x=a;3^x=b;a>0;b>0\)

Bất phương trình trở thành :

\(a+a^2+2ab>2a+4b+2\Leftrightarrow\left(a+2b+1\right)\left(a-2\right)>0\Leftrightarrow a>2\)

Suy ra \(2^x>2\Leftrightarrow x>1\)

Vậy tập nghiệm của bất phương trình là \(S=\left(1;+\infty\right)\)

16 tháng 3 2020

\(21,\frac{2}{x-1}\le\frac{5}{2x-1}\left(x\ne1;x\ne\frac{1}{2}\right)\)

\(\Leftrightarrow\frac{2}{x-1}-\frac{5}{2x-1}\le0\)

\(\Leftrightarrow\frac{4x-2-5x+5}{\left(x-1\right)\left(2x-1\right)}\text{≤}0\)

\(\Leftrightarrow\frac{-x+3}{\left(x-1\right)\left(2x-1\right)}\text{≤}0\)

x -x+3 x-1 2x-1 VT -∞ +∞ 1/2 1 3 0 0 0 | | || | | || | | 0 - + + + + + - - - + + + + + + - -

Vậy \(\frac{-x+3}{\left(x-1\right)\left(2x-1\right)}\le0\Leftrightarrow x\in\left(\frac{1}{2};1\right)\cup[3;+\text{∞})\)

23,24 tương tự 21

\(25,2x^2-5x+2< 0\) (1)

Ta có: \(\left\{{}\begin{matrix}2x^2-5x+2=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\\a=2>0\end{matrix}\right.\) \(\Leftrightarrow\frac{1}{2}< x< 2\)

\(26,-5x^2+4x+12< 0\)

\(\left\{{}\begin{matrix}-5x^2+4x+12=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\frac{6}{5}\end{matrix}\right.\\a=-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< -\frac{6}{5}\end{matrix}\right.\)

\(27,16x^2+40x+25>0\)

\(\left\{{}\begin{matrix}16x^2+40x+25=0\Leftrightarrow x=-\frac{5}{4}\\a=16>0\end{matrix}\right.\)

\(\Leftrightarrow x\ne-\frac{5}{4}\)

\(28,-2x^2+3x-7\ge0\)

\(\left\{{}\begin{matrix}-2x^2+3x-7=0\left(vo.nghiem\right)\\a=-2< 0\end{matrix}\right.\)

\(\Rightarrow-2x^2+3x-7< 0\) ∀x

=> bpt vô nghiệm

\(29,3x^2-4x+4\ge0\)

\(\left\{{}\begin{matrix}3x^2-4x+4=0\left(vo.nghiem\right)\\a=3>0\end{matrix}\right.\)

=> \(3x^2-4x+4>0\) => bpt vô số nghiệm

\(30,x^2-x-6\le0\)

\(\left\{{}\begin{matrix}x^2-x-6=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\a=1>0\end{matrix}\right.\)

\(\Rightarrow-2\le x\le3\)