Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(|3-5x|>=4\)
\(< =>\orbr{\begin{cases}3-5x>=4\\3-5x>=-4\end{cases}}\)
\(< =>\orbr{\begin{cases}-5x=1\\-5x=-7\end{cases}}\)
\(< =>\orbr{\begin{cases}x=\frac{-1}{5}\\x=\frac{7}{5}\end{cases}}\)
\(vay:x_1=\frac{-1}{5};x_2=\frac{7}{5}\)
CÂU 2 , 3 ,4 THÌ TƯƠNG TỰ ( CHIA THÀNH HAI TRƯỜNG HỢP RỒI GIẢI)
\(4x^2-4x-5\left|2x-1\right|-5=0\)
\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)
\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)
TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)
\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)
\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)
TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)
\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)
\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh
Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }
Bài 1:
a) Ta có: \(2\left(3-4x\right)=10-\left(2x-5\right)\)
\(\Leftrightarrow6-8x-10+2x-5=0\)
\(\Leftrightarrow-6x+11=0\)
\(\Leftrightarrow-6x=-11\)
hay \(x=\dfrac{11}{6}\)
b) Ta có: \(3\left(2-4x\right)=11-\left(3x-1\right)\)
\(\Leftrightarrow6-12x-11+3x-1=0\)
\(\Leftrightarrow-9x-6=0\)
\(\Leftrightarrow-9x=6\)
hay \(x=-\dfrac{2}{3}\)
x⁴ - 4x² + 12x - 9 = 0
<=> x⁴ - x³ + x³ - x² - 3x² + 3x + 9x - 9 = 0
<=> x³(x - 1) + x²(x - 1) - 3x(x - 1) + 9(x - 1) = 0
<=> (x - 1)(x³ + x² - 3x + 9) = 0
<=> (x - 1)(x³ + 3x² - 2x² - 6x + 3x + 9) = 0
<=> (x - 1)[ x²(x + 3) - 2x(x + 3) + 3(x + 3) ] = 0
<=> (x - 1)(x + 3)(x² - 2x + 3) = 0
<=> (x - 1)(x + 3)(x² - 2x + 1 + 2) = 0
<=> (x - 1)(x + 3)[ (x - 1)² + 2 ] = 0
<=> (x - 1)(x + 3) = 0 --> do (x - 1)² + 2 > 0 với mọi x
<=>
[ x - 1 = 0 =>[ x = 1
[ x + 3 = 0 =>[ x = -3
Bạn nên sửa >= là = vì giải bất phương trình mà
\(Giải:\)
\(ĐK:x\ne\left(-2\right);x\ne\left(-1\right)\)
\(\frac{x^2+2x+2}{x+1}>\frac{x^2+4x+5}{x+2}-1\Leftrightarrow\frac{x^2+2x+2}{x+1}>\frac{x^2+3x+3}{x+2}\)
\(\Leftrightarrow\frac{x^2+2x+1}{x+1}+\frac{1}{x+1}-\frac{x^2+3x+2+1}{x+2}>0\)
\(\Leftrightarrow\frac{\left(x+1\right)^2}{x+1}-\frac{\left(x+1\right)\left(x+2\right)}{x+2}+\frac{1}{x+1}-\frac{1}{x+2}>0\)
\(\Leftrightarrow x+1-x-1+\frac{1}{x+1}-\frac{1}{x+2}>0\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}>0\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}=\frac{1}{\left(x+1\right)\left(x+2\right)}>0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}hoặc\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\)
\(+,\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}\Rightarrow x>\left(-2\right)\)
\(+,\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\Rightarrow x< \left(-2\right)\)
BPT đã được giải quyết
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
\(4x^2-4x+1>25\)
\(\Leftrightarrow\left(2x-1\right)^2-5^2>0\)
\(\Leftrightarrow\left(2x-1-5\right)\left(2x-1+5\right)>0\)
\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)>0\)
TH1 : \(\hept{\begin{cases}2x-6>0\\2x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>3\\x>-2\end{cases}\Leftrightarrow x>3}}\)
TH2 : \(\hept{\begin{cases}2x-6< 0\\2x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 3\\x< -2\end{cases}\Leftrightarrow x< -2}}\)
Vậy....