Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đặt : x = a + \(\dfrac{1}{3}\) ; y = b + \(\dfrac{1}{3}\) ; z = \(c+\dfrac{1}{3}\)
Ta có : x + y + z = 1
⇒ a + b + c = 0
Ta có : x2 + y2 + z2 = ( a + \(\dfrac{1}{3}\))2 + ( b + \(\dfrac{1}{3}\))2 + ( c + \(\dfrac{1}{3}\))2
= a2 + \(\dfrac{2}{3}a+\dfrac{1}{9}+b^2+\dfrac{2}{3}b+\dfrac{1}{9}+c^2+\dfrac{2}{3}c+\dfrac{1}{9}\)
= \(\dfrac{1}{3}+\dfrac{2}{3}\left(a+b+c\right)+a^2+b^2+c^2\)
= \(\dfrac{1}{3}+a^2+b^2+c^2\) ≥ \(\dfrac{1}{3}\)
Dâu "=" xảy ra khi và chỉ khi : a = b = c = 0 ⇔ x = y = z = \(\dfrac{1}{3}\)
a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)
\(=x^2+2x-5x-10+3x^2-12-3x+\dfrac{1}{2}x^2+5x^2\)
\(=\dfrac{19}{2}x^2-6x-22\)
Vậy biểu thức trên phụ thuộc vào biến x.
b) \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\)
Giải:
VT = \(\left(y-1\right)\left(y^2+y+1\right)\)
\(=y^3+y^2+y-y^2-y-1\)
\(=y^3-1\)
Vậy \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\).
Giải:
a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)
\(\Leftrightarrow N=x^2-3x-10+3\left(x^2-4\right)-3x+\dfrac{1}{2}x^2+5x^2\)
\(\Leftrightarrow N=x^2-3x-10+3x^2-12x-3x+\dfrac{1}{2}x^2+5x^2\)
\(\Leftrightarrow N=-10-18x+\dfrac{19}{2}x^2\)
Vậy biểu thức trên phụ thuộc vào biễn x
b) \(\left(y-1\right)\left(y^2+y+1\right)\)
\(=y^3-y^2+y^2-y+y-1\)
\(=y^3-\left(y^2-y^2\right)-\left(y-y\right)-1\)
\(=y^3-1\)
Vậy ...
+) ta có : \(D=x^2+y^2+2xy-4x-4y+100\)
\(=\left(x+y\right)^2-4\left(x+y\right)+100=3^2-4.3+100=97\)
+) ta có : \(2x^2+y^2=4y-4x-6\Leftrightarrow2x^2+4x+2+y^2-4y+4=0\)
\(\Leftrightarrow2\left(x+1\right)^2+\left(y-2\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
thế vào \(A\) ta có :
\(A=\dfrac{2x^{100}+5\left(y-3\right)^{2011}}{x+y}=\dfrac{2.\left(-1\right)^{100}+5\left(2-3\right)^{2011}}{-1+2}=-3\)
Ta có : x2 + xy + y2 + x - y + 1 = 0
=> 2( x2 + xy + y2 + x - y + 1) = 0
=> 2x2 + 2xy + 2y2 + 2x - 2y + 2 = 0
=> x2 + 2xy + y2 + x2 + 2x + 1 + y2 - 2y + 1 = 0
=> ( x + y)2 + ( x + 1)2 + ( y - 1)2 = 0
Suy ra :
* x + y = 0 => x = -y
* x + 1 = 0 => x = -1
* y - 1 = 0 => y = 1
Từ đó , ta có :
M = ( x + y)30 + ( x + 2)12 + ( y - 1)2017
M = ( -y + y )30 + ( 2 - 1)12 + ( 1 - 1)2017
M = 1
\(x^2+xy+y^2+x-y+1=0\)
\(\Leftrightarrow2x^2+2xy+2y^2+2x-2y+2=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\) (*)
Vì \(\left(x+y\right)^2\ge0;\left(x+1\right)^2\ge0;\left(y-1\right)^2\ge0\)
(*) \(\Leftrightarrow\left(x+y\right)^2=0;\left(x+1\right)^2=0;\left(y-1\right)^2=0\)
\(\Leftrightarrow x+y=0;x+1=0;y-1=0\)
\(\Rightarrow x+2=1\)
\(\Rightarrow\left(x+y\right)^{30}+\left(x+2\right)^{12}+\left(y-1\right)^{2017}=0+1+0=1\)
a) \(A=\left(3x-2\right)^2+\left(x+1\right)^2-2\left(x+1\right)\left(3x-2\right)\)
\(\Leftrightarrow A=\left(x+1\right)^2-2\left(x+1\right)\left(3x-2\right)+\left(3x-2\right)^2\)
\(\Leftrightarrow A=\left[\left(x+1\right)-\left(3x-2\right)\right]^2\)
\(\Leftrightarrow A=\left(x+1-3x+2\right)^2\)
\(\Leftrightarrow A=\left(3-2x\right)^2\)
Thay \(x=\dfrac{3}{2}\) vào biểu thức A ta được:
\(\left(3-2.\dfrac{3}{2}\right)^2=\left(3-3\right)^2=0^2=0\)
Vậy giá trị của biểu thức A tại \(x=\dfrac{3}{2}\) là 0
b) \(B=\dfrac{x^2y\left(y-x\right)-xy^2\left(x-y\right)}{3y^2-3x^2}\)
\(\Leftrightarrow B=\dfrac{x^2y\left(y-x\right)+xy^2\left(y-x\right)}{3\left(y^2-x^2\right)}\)
\(\Leftrightarrow B=\dfrac{\left(y-x\right)\left(x^2y+xy^2\right)}{3\left(y-x\right)\left(y+x\right)}\)
\(\Leftrightarrow B=\dfrac{xy\left(y-x\right)\left(x+y\right)}{3\left(y-x\right)\left(y+x\right)}\)
\(\Leftrightarrow B=\dfrac{xy\left(y-x\right)\left(y+x\right)}{3\left(y-x\right)\left(y+x\right)}\)
\(\Leftrightarrow B=\dfrac{xy}{3}\)
Thay \(x=-3\) và \(y=\dfrac{1}{2}\) vào biểu thức B ta được:
\(\dfrac{\left(-3\right).\dfrac{1}{2}}{3}=\dfrac{\dfrac{-3}{2}}{3}=\dfrac{\dfrac{-3}{2}}{3}=\dfrac{-1}{2}\)
Vậy giá trị của biểu thức B tại \(x=-3\) và \(y=\dfrac{1}{2}\) là \(\dfrac{-1}{2}\)
c) \(C=\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}-\dfrac{2x\left(1-x\right)}{9-x^2}\)
\(\Leftrightarrow C=\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}+\dfrac{2x\left(1-x\right)}{x^2-9}\)
\(\Leftrightarrow C=\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}+\dfrac{2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\) MTC: \(\left(x-3\right)\left(x+3\right)\)
\(\Leftrightarrow C=\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow C=\dfrac{\left(x+1\right)\left(x+3\right)-\left(x-3\right)\left(1-x\right)+2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow C=\dfrac{\left(x^2+3x+x+3\right)-\left(x-x^2-3+3x\right)+\left(2x-2x^2\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow C=\dfrac{x^2+3x+x+3-x+x^2+3-3x+2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow C=\dfrac{2x+6}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow C=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow C=\dfrac{2}{x-3}\)
Thay \(x=5\) vào biểu thức C ta được:
\(\dfrac{2}{5-3}=\dfrac{2}{2}=1\)
Vậy giá trị của biểu thức C tại \(x=5\) là 1
1.
c) x2 - xy - 3x + 3y
= (x2 - xy) - (3x - 3y)
= x(x - y) - 3(x - y)
= (x - 3)(x - y)
3.
ĐKXĐ: \(x\ne y,y\ne z,z\ne x\)
Ta có:
\(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}=\dfrac{\left(z-x\right)+\left(x-y\right)+\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)
Sửa đề:" CM BĐT
x^2+y^2>=(x+y)^2/2
=>2x^2+2y^2-x^2-2xy-y^2>=0
=>(x-y)^2>=0(luôn đúng)(1)
(x+y)^2/2>=2xy
=>(x+y)^2>=4xy
=>(x-y)^2>=0(luôn đúng)(2)
Từ (1), (2) suy ra ĐPCM