Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A=1+1/2+1/4+1/8+.........+1/512
2A‐A=﴾1+1/2+1/4+1/8+....+1/512﴿‐﴾1/2+1/4+1/8+.....+1/1024﴿
A=1‐1/1024 =1023/1024
vậy A=1023/1024
Đặt A=\(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.........+\frac{1}{1024}\) (1)
Ta có: 2A=\(2+1+\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{512}\) (2)
Từ (1) và (2) \(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{4}+...........+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+..........+\frac{1}{1024}\right)\)
\(\Rightarrow A=2-\frac{1}{1024}\)
\(\Rightarrow A=\frac{2047}{1024}\)
Giải:
S = 1/2+1/4+1/8+1/16:...=1/1024
= (1 - 1/2) + (1/2 -1/4) + (1/4 - 1/8) + ... + (1/512 - 1/1024).
= 1 - 1/1024
= 1023/1024
ĐS: 1023/1024
S=1/2+1/4+1/8+1/16:....=1/1024
=(1 - 1 / 2)+(1 / 2 - 1 / 4)+(1 / 4 - 1 / 8)+..+(1 / 512 - 1 / 1024)
=1 - 1/1024
=1023 / 1024
Tích cho mình nha!
lúc nào bùi đức thắng cũng nói câu đấy để câu tick đấy các bn đừng tick
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)
Đặ A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)(1)
=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)(2)
Lấy (2) trừ (1) theo vế ta có :
2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)
=> A = \(1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{20}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^9}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)
gọi A=1/2+1/4+1/8+...+1/1024
2xA=1+1/2+1/4+.....+1/512
2xA-A=(1+1/2+1/4+....+1/512)-(1/2+1/4+1/8+...+1/1024)
A=1-1/1024
=1023/1024
vậy A=1023/1024
Ta có :
\(S=1-\frac{1}{2}+\frac{1}{4}-...+\frac{1}{1024}\)
\(S=1-\frac{1}{2}+\frac{1}{2^2}-...+\frac{1}{2^{10}}\)
\(\frac{1}{2}S=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-...+\frac{1}{2^{11}}\)
\(S+\frac{1}{2}S=\left(1-\frac{1}{2}+\frac{1}{2^2}-...+\frac{1}{2^{10}}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-...+\frac{1}{2^{11}}\right)\)
\(\frac{3}{2}S=1-\frac{1}{2^{11}}\)
\(S=\frac{1-\frac{1}{2^{11}}}{\frac{3}{2}}\)
\(S=\frac{2-\frac{1}{2^{10}}}{3}\)
\(S=\frac{\frac{2^{11}-1}{2^{10}}}{3}\)
Vậy \(S=\frac{\frac{2^{11}-1}{2^{10}}}{3}\)
Chúc bạn học tốt ~
Ta có:
2S = 2.(1-1/2+1/4-1/8+1/16-...+1/1024)
2S = 2/2-1+1/2-1/4+1/8-...+1/512
2S+S = ( 2/2-1+1/2-1/4+1/8-...+1/512)+(1-1/2+1/4-1/8+1/16-...+1/1024)
3S = 2 + 1/1024
3S = 2048/1024+1/1024
3S = 2049/1024
S = 2049/1024 : 3
S = 2049/1024.1/3
S = 683/1024