Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều rộng là x
Chiều dài là x+6
Theo đề, ta có: x(x+6)=216
=>x2+6x=216
=>(x+3)2=225
=>x+3=15 hoặc x+3=-15
=>x=12
Vậy: Chiều rộng là 12m
Chiều dài là 18m
gọi chiều dài ban đầu vườn là x(m) (x>0)
chiều rông ban đầu của vườn là y(m) (y>6)
chiều dài lúc sau của vườn là x+10 (m)
chiều rộng lúc sau của vườn là y-6 (m)
Ta có hệ phương trình
xy = 720 và (x+10)(y-6)=720 *
giải *: (x+10)(y-6)=720
<=> xy - 6x +10y -60 =720
thay xy=720 ta được: 720 - 6x + 10y -60 =720
giải tiếp rồi rút x thế vào phương trình xy=720
Gọi chiều dài và chiều rộng của hcn lần lượt là: a, b (m)
Ta có: \(\hept{\begin{cases}ab=300\\\left(a+5\right)\left(b-3\right)=300\left(1\right)\end{cases}}\)
Từ (1) \(\Rightarrow ab-3a+5b-15=300\)
\(\Leftrightarrow300-3a+5b-15=300\)\(\Leftrightarrow-3a+5b=15\)\(\Leftrightarrow3a-5b=-15\)
Đặt \(c=3a\)và \(d=-5b\)\(\Rightarrow a=\frac{c}{3}\); \(b=\frac{d}{-5}\)
Ta có hệ \(\hept{\begin{cases}\frac{c}{3}.\frac{d}{-5}=300\\c+d=-15\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{cd}{-15}=300\\c+d=-15\end{cases}}\Leftrightarrow\hept{\begin{cases}cd=-4500\\c+d=-15\end{cases}}\)
Áp dụng hệ thức Viets ta có: \(X^2-\left(-15\right)X-4500=X^2+15X-4500\)
\(\Delta=15^2-4.1.\left(-4500\right)=18225\)
\(X_1=c=\frac{-15+\sqrt{18225}}{2}=60\) hoặc \(X_2=d=\frac{-15-\sqrt{18225}}{2}=-75\)
\(\Rightarrow a=\frac{c}{3}=\frac{60}{3}=20\); \(b=\frac{-75}{-5}=15\)
\(\Rightarrow P_{hcn}=2\left(a+b\right)=2\left(20+15\right)=70\)
Vậy chu vi hcn ban đầu là 70 cm
Gọi chiều dài chiều rộng ban đầu của hình chữ nhật là: x;y (m)
ĐK : x>5; y > 0 , x >y
Chiều dài của hình chữ nhật khi giảm đi 5m là : x - 5 (m)
Chiều rộng tăng 2m nên ta có chiều rộng lúc sau là : y + 2 (m)
Vì nếu tăng chiều rộng 2m và giảm chiều dài 5m thì thu được 1 hình vuông nên ta có :
x - 5 = y + 2
<=> x - y = 7 (1)
Diện tích hình chữ nhật ban đầu là: xy = 120(m²) (2)
Từ (1) và (2) ta có hệ :
x - y = 7 và xy = 120 (thế)
Giải hệ ta được x = 15(TMDK ẩn)
y = 8(TMDK ẩn)
Vậy chiều dài và chiều rộng của hình chữu nhật đó lần lượt là 15m và 8m
Tham khảo
Gọi chiều dài của hình chữ nhật là a(m)
Chiều rộng của hình chữ nhật là b(m) Với 0<b<a<120
Theo đề bài:
Diện tích của hcn là 120m^2 => ab=120m^2 (1)
Tăng chiều rộng giảm chiều dài chứ nhỉ?
Nếu tăng chiều rộng 2m và giảm chiều dài 5m thì được hình vuông =>b+2=a-5
\(\left\{{}\begin{matrix}b+2=a-5\\ab=120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a-7\\ab=120\end{matrix}\right.\)
⇒a\(^2\)-7a-120=0
⇒(a−15)(a+8)=0⇒a=15⇒b=8
Gọi chiều rộng là x
Chiều dài là 37-x
Theo đề, ta có: \(3\left(37-x\right)-5x=15\)
\(\Leftrightarrow111-3x-5x=15\)
=>8x=96
hay x=12
Diện tích là 12x25=300(m2)
Gọi chiều rộng là x
Chiều dài là x+6
Theo đề, ta có: x(x+6)=112
\(\Leftrightarrow x^2+6x-112=0\)
=>(x+3)2-121=0
=>x-8=0
=>x=8
Vậy: Chiều rộng là 8m
Chiều dài là 14m
Gọi chiều dài là a, chiều rộng là b (a,b>0)
Theo đề bài ra ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=6\\ab=112\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=6+b\\b\left(6+b\right)=112\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=6+b\\b^2+6b-112=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=6+b\\\left(b^2-8b\right)+\left(14b-112\right)=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=6+b\\b\left(b-8\right)+14\left(b-8\right)=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=6+b\\\left(b+14\right)\left(b-8\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=6+b\\\left[{}\begin{matrix}b=8\left(tm\right)\\b=-14\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=6+8\\b=8\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=14\\b=8\end{matrix}\right.\)
Vậy chiều dài là 14m, chiều rộng là 8m