Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì x^2>/0\(\Rightarrow x^2+3\ge3\)
dấu bằng xảy ra khi |x^2+3|=3\(\Rightarrow x^2+3=3\Rightarrow x^2=0\Rightarrow x=0\)(1)
vì y^2>/0\(\Rightarrow y^2+6\ge6\)
dấu bằng xảy ra khi |y^2+6|=6\(\Rightarrow y^2+6=6\Rightarrow y^2=0\Rightarrow y=0\)(2)
từ (1)(2) suy ra: GTNN của |x^2+3|+|y^2+6|-12,5=3+6-12,5=-3,5
vậy GTNN của |x^2+3|+|y^2+6|-12,5 là -3,5 khi x=y=0
ta thấy: (x-1)^2 >hoặc =0
(y+3)^2 >hoặc = 0
suy ra (x-1)^2+ (y+3)^2 > hoac = 0
suy ra (x-1)^2+ (y+3)^2+ 5 > hoặc = 5
Để M đạt giá trị nhỏ nhất khi và chỉ khi M=5
Vậy M đạt giá trị nhỏ nhất =5
Ta có (x+1)^2\(\ge0với\forall x\) (y+3)^2\(\ge0\)với\(\forall y\)(bình phương không âm)
=>B=(x+1)^2+(y+3)^2+1\(\ge1\)
Ta có: (x + 1)2 \(\ge\)0 và (y - 2)2 \(\ge\) 0
=> (x + 1)2 + (y - 2)2 + 9 \(\ge\)9
Đẳng thức xảy ra khi: (x + 1)2 = 0 và (y - 2)2 = 0 => x = -1 và y = 2
Vậy giá trị nhỏ nhất của (x + 1)2 + (y - 2)2 + 9 là 9 khi x = -1 và y = 2
\(A=\left(x+1\right)^2+\left(y-2\right)^2+9\)
Có: \(\left(x+1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\left(x+1\right)^2+\left(y-2\right)^2+9\ge9\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\) .
Vậy: \(Min_A=9\) tại \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
a)Ta thấy:
\(\left(2x+\frac{1}{3}\right)^2\ge0\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^2-\frac{5}{6}\ge0-\frac{5}{6}=-\frac{5}{6}\)
\(\Rightarrow A\ge-\frac{5}{6}\)
Dấu "=" <=>x=-1/6
Vậy MinA=-5/6<=>x=-1/6
b)Ta thấy:\(\hept{\begin{cases}\left|2x+3\right|\\\left|y-\frac{1}{2}\right|\end{cases}\ge}0\)
\(\Rightarrow\left|2x-3\right|+\left|y-\frac{1}{2}\right|\ge0\)
\(\Rightarrow\left|2x-3\right|+\left|y-\frac{1}{2}\right|+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}\)
\(\Rightarrow B\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|2x-3\right|=0\\\left|y-\frac{1}{2}\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
Vậy...
x-y=2
=>x=y+2
Thay x=y+2 vào Q,ta đc:
\(Q=\left(y+2\right).y+4=y^2+2y+4=y^2+2y+1+3\)
\(Q=y^2+y+y+1+3=y\left(y+1\right)+\left(y+1\right)+3=\left(y+1\right)\left(y+1\right)+3=\left(y+1\right)^2+3\)
Vì \(\left(y+1\right)^2\ge0\Rightarrow\left(y+1\right)^2+3\ge3\)
=>GTNN của Q là 3
Dấu "=" xảy ra <=> y+1=0<=>y=-1
Vậy.............
\(\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\ge5\)
...............................................
\(\left|x^2+3\right|\ge3;\left|y^2+6\right|\ge6\)
\(\Rightarrow\left|x^2+3\right|+\left|y^2+6\right|-12,5\ge-3,5\)
Dấu "=" xảy ra khi và chỉ khi:
|x2 + 3| = 3 và |y2 + 6| = 6
<=> x2 + 3 = 3 hoặc x2 + 3 = -3 (vô lí) và y2 + 6 = 6 hoặc y2 + 6 = -6 (vô lí)
<=> x2 = y2 = 0
<=> x = y = 0.