Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$(x-3)^2\geq 0$ với mọi $x$
$(y-7)^4\geq 0$ với mọi $y$
$\Rightarrow A=(x-3)^2+(y-7)^4-7\geq 0+0-7=-7$
Vậy $A_{\min}=-7$. Giá trị này đạt tại $x-3=y-7=0$
$\Leftrightarrow x=3; y=7$
a/ Để A nhỏ nhất thì |x-7| là nhỏ nhất
=> |x-7| = 0
Vậy GTNN của A là : 0-1= -1
1. a, => -12x+60+21-7x = 5
=> 81 - 19x = 5
=> 19x = 81 - 5 = 76
=> x = 76 : 19 = 4
Tk mk nha
a, Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|2y-10\right|\ge0\end{cases}\Rightarrow\left|x+2\right|+\left|2y-10\right|}\ge0\)
\(\Rightarrow\left|x+2\right|+\left|2y-10\right|+2014\ge2014\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)
Vậy SMin = 2014 tại x = -2 và y = 5
b, Đặt A = |x + 6| + |7 - x|
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),ta có:
\(A=\left|x+6\right|+\left|7-x\right|\ge\left|x+6+7-x\right|=13\)
Dấu "=" xảy ra <=> \(\left(x+6\right)\left(7-x\right)\ge0\Leftrightarrow-6\le x\le7\)
Vậy AMin = 13 tại \(-6\le x\le7\)
Để biểu thức S đạt giá trị nhỏ nhất => | x + 2 | và | 2y - 10 | có giá trị nhỏ nhất
=> | x+2 | = 0 => x = 0 - 2 = -2 ; | 2y -10 | =0 => 2y = 0 - 10 = -10 => y = -10 : 2 = -5
Vậy x = -2 ; y = -5 thì biểu thức S đạt giá trị nhỏ nhất
a, Ta có : \(\left|x+19\right|\ge0\forall x;\left|y-5\right|\ge0\forall y\)
\(\Rightarrow A\ge1890\)Dấu ''='' xảy ra <=> x = -19 ; y = 5
Vậy GTNN A là 1890 <=> x = -19 ; y = 5
b, Ta có : \(-\left(\left|x-7\right|+\left|y+13\right|\right)+1945\le1945\)
hay \(\Rightarrow B\le1945\)
vì \(\left|x-7\right|\ge0\forall x;\left|y+13\right|\ge0\forall y\)
Dấu''='' xảy ra <=> x = 7 ; y = -13
Vậy GTLN B là 1945 <=> x = 7 ; y = -13