K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

hì^^!!Toán lớp 8

31 tháng 7 2016

camon bạn ạ

 

a) \(A=x^2-6x+11\)

\(\Rightarrow A=x^2-6x+9+2\)

\(\Rightarrow A=\left(x-3\right)^2+2\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = 3

Vậy \(MIN\) \(A=2\Leftrightarrow x=3\)

b) \(B=2x^2+10x-1\)

\(\Rightarrow B=2\left(x^2+5\right)-1\)

\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{25}{2}-1\)

\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\)

Ta có: \(2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)\ge0\forall x\)

\(\Rightarrow2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\ge-\dfrac{23}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{-5}{2}\)

Vậy \(MIN\) \(B=\dfrac{-23}{2}\Leftrightarrow x=\dfrac{-5}{2}\)

c) \(C=5x-x^2\)

\(\Rightarrow C=-\left(x^2-5x\right)\)

\(\Rightarrow C=-\left(x^2-2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(\Rightarrow C=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)

Ta có: \(-\left(x-\dfrac{5}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)

Vậy \(MAX\) \(C=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)

18 tháng 10 2019

Mình đang cần gấp . Đảm bảo k trả đầy đủ + kb :'>

18 tháng 10 2019

2.    \(Q=\left(x-3\right)\left(4x+5\right)+2019\)

        \(Q=4x^2+5x-12x-15+2019\)   

        \(Q=4x^2-7x+2004\)  

        \(Q=\left(2x\right)^2-2.2x.\frac{7}{4}+\frac{49}{16}+2019-\frac{49}{16}\) 

        \(Q=\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\)  

        \(Do\) \(\left(2x-\frac{7}{4}\right)^2\ge0\forall x\) \(Nên\) \(\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\ge\frac{32255}{16}\)  

        \(\Rightarrow Q\ge\frac{32255}{16}\) 

         \(Vậy\) \(MinQ=\frac{32255}{16}\Leftrightarrow x=\frac{7}{8}\)

3. \(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)  

   \(T=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\) 

   \(T=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)  (do a+b=1)

   \(T=4a^2-4ab+4a^2-6a^2-6b^2\) 

   \(T=-2a^2-4ab-2b^2\)

   \(T=-2\left(a^2+2ab+b^2\right)\) 

   \(T=-2\left(a+b\right)^2\)

   \(T=-2.1^2=-2.1=-2\) (do a+b=1)

   

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

3 tháng 7 2016

bạn chỉ giúp mình đáp án đi

17 tháng 12 2017

\(2x^2+10x-1=\\ 2\left(x^2+5x-\dfrac{1}{2}\right)\\ =2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}-\dfrac{27}{4}\right)\\ =2\left(\left(x+\dfrac{5}{2}\right)^2-\dfrac{27}{4}\right)\\ =2\left(x+\dfrac{5}{2}\right)^2-\dfrac{27}{2}\)

\(2\left(x+\dfrac{5}{2}\right)^2\ge0\Rightarrow2\left(x+\dfrac{5}{2}\right)^2-\dfrac{27}{2}\ge-\dfrac{27}{2}\)vậy Min \(2x^2+10x-1\) \(=-\dfrac{27}{2}\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2=0\)

\(\Rightarrow x+\dfrac{5}{2}=0\Rightarrow x=-\dfrac{5}{2}\)

17 tháng 12 2017

Thanks <3