\(A=\left(2x-4\right)^2-4\left|4-2x\right|+1986\) l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2016

\(A=\left(2x-4\right)^2-4\left|4-2x\right|+1986=\left(2x-4\right)^2-4\left|2x-4\right|+1986\)

Ta thấy: \(\left|2x-4\right|^2=\left(2x-4\right)^2\)

Đặt t=|2x-4| ta được: t2=(2x-4)2

Suy ra: A=t2-4t+1986=t2-4t+4+1982

=(t-2)2+1982 \(\ge\)1982 (với mọi x)

Dấu "=" xảy ra khi: t=2

<=>|2x-4|=2

Với x\(\ge\)0 ta được: 2x-4=2 <=> x=3

Với x<0 ta được: 4-2x=-2 <=> x=3 (loại)

Vậy GTNN của A là 1982 tại x=3

 

20 tháng 9 2016

3 nhe

23 tháng 2 2016

\(\left(2x-5\right)^2<\left(2x-1\right)\left(2x+1\right)-\frac{5}{4}\Leftrightarrow4x^2-20x+25<4x^2-1-\frac{5}{4}\)

<=>-20x+25<-9/4

<=>-20x<-109/4

<=>x>109/80=1,3625

Vậy giá trị x cần tìm là: 2

14 tháng 3 2016

Ta có: x2>=0(với mọi x)

=>2x-x2<=2x(với mọi x)

->(2x-x2)(x+2)(x+4)<=(2x)(x+2)(x+4)(với mọi x) hay A<=(2x)(x+2)(x+4)

Do đó, GTLN của A  khi x =0 là (2x)(x+2)(x+4) hay 0(x+2)(x+4) hay 0

Vậy GTLN của A là 0 khi x=0

20 tháng 2 2017

\(P=\left(4a^2+b^2+4ab-12a-6b+9\right)+\left(3b^2-6b+3\right)\)

\(P=\left(2a+b-3\right)^2+3\left(b-1\right)^2\ge0\)

Đẳng thức xẩy ra khi: \(\left\{\begin{matrix}\left(b-1\right)=0\\2a+b-3=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}b=1\\a=1\end{matrix}\right.\)

Kết luận: GTNN P=0 khi a=b=1

20 tháng 2 2016

[(4a^2 - 12a + 9) + 2b(2a - 3) + b^2] + 3b^2 - 6b + 3

= (2a - 3 + b)^2 + 3(b-1)^2

=> P nhỏ nhất = 0 khi (2a - 3 + b) = 3(b-1) = 0

tick cho mk nhaeoeo

3 tháng 9 2018

19 tháng 2 2016

\(P=4a^2+4ab+4b^2-12a-12b+12=\left[\left(4a^2-12a+9\right)+2b\left(2a-3\right)+b^2\right]+3b^2-6b+12\\ =\left(2a+b-3\right)^2+3\left(b-1\right)^2+9\)

13 tháng 3 2016

x^2-2xy+6^2-12x+2y+45   =  x^2-2x(y+6)^2-(y+6)^2+6y^2+2y+45=(x-y-6)^2-y^2-12y-36+6y^2+2y+45=(x-y-6)^2+5y^2-10y+9=(x-y-6)^2+5(y^2-2y+1)+4=(x-y-6)^2+5(y-1)^2+4suy ra min=4 va(x,y)=(7,1)