Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=x^2-4x+1\)
\(A=x^2-4x+4-3\)
\(A=\left(x^2-4x+4\right)-3\)
\(A=\left(x-2\right)^2-3\)
Ta có: \(\left(x-2\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-2\right)^2-3\ge-3\) với mọi x
Vậy MIinA = -3 khi x = 2
2) \(B=-x^2+13x+2012\)
\(B=-x^2+13x-\frac{169}{4}+\frac{169}{4}+2012\)
\(B=-\left(x^2-13+\frac{169}{4}\right)+\left(\frac{169}{4}+2012\right)\)
\(B=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\)
Ta có: \(\left(x-\frac{13}{2}\right)^2\ge0\) với mọi x
\(-\left(x-\frac{13}{2}\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)
Vây \(Max\left(B\right)=\frac{8217}{4}\) khi \(x=\frac{13}{2}\)
\(P\left(x\right)=-x^2+13x-42,25+1969,75\)
\(P\left(x\right)=-\left(x^2-2\cdot6.5\cdot x+6.5^2\right)+1969,75\)
\(P\left(x\right)=-\left(x-6,5\right)^2+1969,75\le1969,75\)
Dấu \("="\) xảy ra khi \(x-6,5=0\Rightarrow x=6,5\)
Vậy MaxP=1969,75 khi x=6,5
\(C=13x+2012-x^2\)
\(=-\left(x^2-13x+\dfrac{169}{4}\right)+\dfrac{7879}{4}\)
\(=-\left(x-\dfrac{13}{2}\right)^2+\dfrac{7879}{4}\)
Nhận xét :
\(\left(x-\dfrac{13}{2}\right)^2\ge0\)
\(\Leftrightarrow-\left(x-\dfrac{13}{2}\right)^2\le0\)
\(\Leftrightarrow-\left(x-\dfrac{13}{2}\right)+\dfrac{7879}{4}\le\dfrac{7879}{4}\)
\(\Leftrightarrow C\le\dfrac{7879}{4}\)
Dấu "=" xảy ra khi : \(\left(x-\dfrac{13}{2}\right)^2=0\Leftrightarrow x=\dfrac{13}{2}\)
Vậy...
1/ Ta có : P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}P(x)=−x2+13x+2012=−(x−213)2+48217≤48217
Dấu "=" xảy ra khi x = 13/2
Vậy Max P(x) = 8217/4 tại x = 13/2
1/ Ta có : P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}P(x)=−x2+13x+2012=−(x−213)2+48217≤48217
Dấu "=" xảy ra khi x = 13/2
Vậy Max P(x) = 8217/4 tại x = 13/2
2/ Ta có : x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1x3+3xy+y3=x3+3xy.1+y3=x3+y3+3xy(x+y)=(x+y)3=1
3/ a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0
\Leftrightarrow ab+bc+ac=-\frac{1}{2}⇔ab+bc+ac=−21 \Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}⇔(ab+bc+ac)2=41⇔a2b2+b2c2+c2a2+2abc(a+b+c)=41
\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}⇔a2b2+b2c2+c2a2=41(vì a+b+c=0)
Ta có : a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1a2+b2+c2=1⇔(a2+b2+c2)2=1⇔a4+b4+c4+2(a2b2+b2c2+c2a2)=1
\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}⇔a4+b4+c4=1−2(a2b2+b2c2+c2a2)=1−42.1=21
Bạn ơi tìm GTNN mới đúng
A = (x^2+13x+42,25) + 1969,75 = (x+6,5)^2 + 1969,75 >= 1969,75
Dấu "=" xảy ra <=> x+6,5 = 0
<=> x= -6,5
Vậy Min A = 1969,75 <=> x= -6,5
A=(x^2+2.13/2+169/4)-169/4
A=(x+13/2)^2-169/4
Vì(x+13/2)^2\(\ge\)0
->(x+13/2)^2-169/4\(\ge\)169/4
Dấu "=" xảy ra<=> x+13/2=0<=> x=-13/2
Vậy Min của A là 169/4<=> x=-13/2
1/ Ta có : \(P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)
Dấu "=" xảy ra khi x = 13/2
Vậy Max P(x) = 8217/4 tại x = 13/2
2/ Ta có : \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)
3/ \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow ab+bc+ac=-\frac{1}{2}\) \(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)(vì a+b+c=0)
Ta có : \(a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}\)
\(K=-x^2+13x+2012=x^2+13x-\frac{169}{4}+\frac{8217}{4}\)
\(=\left(-x^2+13x-\frac{169}{4}\right)+\frac{8217}{4}\)
Mà \(-x^2+13x-\frac{169}{4}=2x\left(-\frac{1}{2}x+\frac{13}{2}\right)-\frac{169}{4}\le0\) ( do \(2x\left(-\frac{1}{2}x+\frac{13}{2}\right)\le\frac{169}{4}\))
Do đó \(K=\left(-x^2+13x-\frac{169}{4}\right)+\frac{8217}{4}\le\frac{8217}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow2x\left(-\frac{1}{2}x+\frac{13}{2}\right)=\frac{169}{4}\Leftrightarrow x=\frac{13}{2}\)
Vậy \(K_{max}=\frac{8217}{4}\Leftrightarrow x=\frac{13}{2}\)
A = -x^2 + 13x + 2012
4A = -4x^2 + 52x + 8048
4A = -(2x-13)^2 + 8048 + 169
4A = -(2x-13)^2 + 8217
A = -(2x-13)^2/4 + 2054,25
GTLL của A = 2054,25 khi 2x-13 = 0 <=> x=6,5