Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vậy tại sao lại còn bình luận? Hỏi mn chứ có hỏi riêng em đâu? Lại còn xưng là tớ?! :))))
\(A=-\left(x^2+y^2+3^2+2xy-6x-6y\right)-4\left(x^2-2x+1\right)-\left(y^2-4y+4\right)-3\)
\(A=-\left(x+y-3\right)^2-4\left(x-1\right)^2-\left(y-2\right)^2-3\le-3\)
Vậy Max A=-3 <=> x=1;y=2
Ta có A = 5x2 - 2xy + 2y2 - 4x + 2y + 3
=> 2A = 10x2 - 4xy + 4y2 - 8x + 4y + 6
= (x2 - 4xy + 4y2) - 2(x - 2y) + 1 + 9x2 - 6x + 1 + 4
= \(\left(x-2y\right)^2-2\left(x-2y\right)+1+9\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+4\)
\(=\left(x-2y-1\right)^2+9\left(x-\frac{1}{3}\right)^2+4\)\(\ge4\)
=> A \(\ge\)2
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2y-=0\\x-\frac{1}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2y=1\\x=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{3}\\x=\frac{1}{3}\end{cases}}\)
Vậy khi x = 1/3 ; y = -1/3 thì A đạt GTNN
\(A=5x^2+2y^2-2xy-4x+2y\)\(+3\)
\(=\left(x^2-2xy+y^2\right)+\)\(\left(4x^2-4x+1\right)+\)\(\left(y^2+2y+1\right)+1\)
\(Tacó\)
Ta có :
\(K=\left(-x^2-9y^2-1+6xy+6y-2x\right)+\left(-y^2+4y-4\right)+2015\)
\(=-\left[x^2+\left(3y\right)^2+1^2+2.x.3y+2.x.\left(-1\right)+2.3y.1\right]-\left(y^2-4y+4\right)+2015\)
\(=-\left(x-3y+1\right)^2-\left(y-2\right)^2+2015\)
Ta thấy \(-\left(x-3y+1\right)^2\le0\forall x;y\text{ }\text{and}\text{ }-\left(y-2\right)^2\le0\forall y\)
\(\Rightarrow-\left(x-3y+1\right)^2-\left(y-2\right)^2\le0\forall x;y\)
\(\Rightarrow K=-\left(x-3y+1\right)^2-\left(y-2\right)^2+2015\le2015\forall x;y\)
K đạt GTLN là 2015 khi \(\hept{\begin{cases}x-3y+1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\)
MAX =-3 . violympic vòng 15
vào link này tham khảo nha http://olm.vn/hoi-dap/question/461515.html