K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

Ta có: \(\left(x-y\right)^2+\left(2x+3y-10\right)^2\ge0\)

\(\Rightarrow A=\left(x-y\right)^2+\left(2x+3y-10\right)^2-2\ge2\)

Dấu " = " xảy ra khi \(\left\{\begin{matrix}\left(x-y\right)^2=0\\\left(2x+3y-10\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x-y=0\\2x+3y-10=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=y\\2x+3y=10\end{matrix}\right.\)

\(\Rightarrow2x+3x=10\Rightarrow5x=10\Rightarrow x=2\)

\(\Rightarrow x=y=2\)

Vậy \(MIN_A=-2\) khi x = y = 2

5 tháng 2 2017

do (x-y)2 >=0

và (2.x+3.y-10)2 >=0

nên A nhỏ nhất bằng -2

=> x-y=0

25 tháng 1 2017

Vì (x - y)2 ≥ 0 ; (2x + 3y - 10)2 ≥ 0

=> A = (x - y)2 + (2x + 3y - 10)2 ≥ 0

=> A = (x - y)2 + (2x + 3y - 10)2 - 2 ≥ - 2

Dấu "=" xảy ra khi x - y = 0 hoặc 2x + 3y = 10 <=> x = y = 2

Vậy Amin là - 2 tại x = y = 2

28 tháng 11 2016

\(A=\left|x-3\right|+\left|y+3\right|+2016\)

\(\left|x-3\right|\ge0\)

\(\left|y+3\right|\ge0\)

\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)

Dấu ''='' xảy ra khi \(x-3=y+3=0\)

\(x=3;y=-3\)

\(MinA=2016\Leftrightarrow x=3;y=-3\)

\(\left(x-10\right)+\left(2x-6\right)=8\)

\(x-10+2x-6=8\)

\(3x=8+10+6\)

\(3x=24\)

\(x=\frac{24}{3}\)

x = 8

19 tháng 1 2019

Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x;y\\\left(y-\sqrt{2}\right)^2\ge0\forall x;y\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y-\sqrt{2}\right)^2\ge0\forall x;y\)

\(\Rightarrow\left(x+1\right)^2+\left(y-\sqrt{2}\right)^2+2008\ge2008\forall x;y\)

\(\Rightarrow N\ge2008\forall x;y\)

\(N=2008\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-\sqrt{2}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y-\sqrt{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=\sqrt{2}\end{cases}}}\)

19 tháng 1 2019

 \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-\sqrt{2}\right)^2\ge0\end{cases}}\text{Dấu }=\text{xảy ra khi}\hept{\begin{cases}x+1=0\\y-\sqrt{2}=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=\sqrt{2}\end{cases}}}\)

\(\Rightarrow MinN=2008\Leftrightarrow\hept{\begin{cases}x=-1\\y=\sqrt{2}\end{cases}}\)

\(M=3.1+\frac{1-\sqrt{2}^2}{1+1}=3+\frac{1-2}{2}=\frac{5}{2}\)

22 tháng 3 2018

Ta có : 

\(\left(x+1\right)^2\ge0\)\(\left(\forall x\inℤ\right)\)

\(\left(y-\sqrt{2}\right)^2\ge0\)\(\left(\forall y\inℤ\right)\)

\(\Rightarrow\)\(\left(x+1\right)^2+\left(y-\sqrt{2}\right)^2+2008\ge2008\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-\sqrt{2}\right)^2=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y-\sqrt{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\sqrt{2}\end{cases}}}\)

Thay \(x=-1\) và \(y=\sqrt{2}\) vào \(M=3x+\frac{x^2-y^2}{x^2+1}\) ta được : \(M=3.\left(-1\right)+\frac{\left(-1\right)^2-\left(\sqrt{2}\right)^2}{\left(-1\right)^2+1}\)

\(M=-3+\frac{1-2}{1+1}\)

\(M=-3+\frac{-1}{2}\)

\(M=\frac{-7}{2}\)

Vậy : +) Giá trị của \(M=3x+\frac{x^2-y^2}{x^2+1}\) tại \(x=-1\) và \(y=\sqrt{2}\) là \(\frac{-7}{2}\)

         +) Giá trị nhỏ nhất của \(P=2008\) khi \(x=-1\) và \(y=\sqrt{2}\)

Chúc bạn học tốt ~ 

22 tháng 3 2018

x=0 vs y= 1

ok nha

không  bt đúng hay sai

20 tháng 7 2017

1. Ta có: \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\) ( vì \(a+b+c=1\) )

Do đó \(\left(x+y+z\right)^2=\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)( vì \(a^2+b^2+c^2=1\) ).

Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^2\)

20 tháng 7 2017

2. Đặt \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)

Ta có: \(\dfrac{a+b}{10}=\dfrac{a-2b}{7}\)\(a^2b^2=81\)

\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}=\dfrac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\dfrac{3b}{3}=b\) __(1)__

\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}=\dfrac{2a+2b}{20}=\dfrac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\dfrac{3a}{27}=\dfrac{a}{9}\)__(2)__

Từ (1) và (2) suy ra \(\dfrac{a}{9}=b\Rightarrow a=9b\)

Do \(a^2b^2=81\) nên \(\left(9b\right)^2.b^2=81\Rightarrow81b^4=81\Rightarrow b^4=1\Rightarrow b=1\) ( vì \(b\ge0\) )

Suy ra: a = 9.1 = 9

Ta có: \(x^2=9\)\(y^2=1\). Suy ra: \(x=\pm3,y=\pm1\)

5 tháng 3 2017

aaaaa

14 tháng 6 2018

Tham khảo tại đây nha

https://olm.vn/hoi-dap/question/1185924.html

Mk làm ở đây rồi 

AE nhớ k mk nha @@@@@@@@@@@_@@@@@@@@@@@@@@@@@

13 tháng 8 2016

\(\Rightarrow\left(-\frac{3}{2}\right)^y=\left(\frac{3}{2}\right)^{10}:\left(\frac{3}{2}\right)^6\Rightarrow\left(-\frac{3}{2}\right)^y=\left(\frac{3}{2}\right)^4=\left(-\frac{3}{2}\right)^4\)

\(\Rightarrow y=4\)

13 tháng 8 2016

\(\left(\frac{3}{2}\right)^y=\left(\frac{3}{2}\right)^{10}:\left(\frac{3}{2}\right)^6\Rightarrow\left(\frac{3}{2}\right)^y=\left(\frac{3}{2}\right)^4\)

\(\Rightarrow\)y=4