K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

30 tháng 1 2018

Có : A+1 = 6x+8+x^2+1/x^2+1 = x^2+6x+9/x^2+1 = (x+3)^2/x^2+1 >= 0

=> A >= -1

Dấu "=" xảy ra <=> x+3=0 <=> x=-3

Vậy GTNN của A = -1 <=> x=-3

Tk mk nha

30 tháng 1 2018

tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê 

30 tháng 10 2021

Giải

Ta có: \(A\left(x\right)=4x^2+6x+10\)

\(\Rightarrow A\left(x\right)=4x^2+4.\frac{3}{2}x+4.\frac{5}{2}\)(Biến tất cả các hạng tử sao cho có nhân tử chung là 4 để làm mất hệ số 4 ở x^2)

\(\Rightarrow A\left(x\right)=4\left(x^2+\frac{3}{2}x+\frac{5}{2}\right)\)(Đấy, thấy số 4 đã ra ngoài chưa)

\(\Rightarrow A\left(x\right)=4\left(x^2+2.\frac{3}{4}x+\frac{9}{16}+\frac{31}{16}\right)\)

(Giờ đây ta lại biến đổi sao cho có hằng đẳng thức và mình đã tách 5/2 thành 9/16 + 31/16)

\(\Rightarrow A\left(x\right)=4\left\{\left[x^2+2.\frac{3}{4}x+\left(\frac{3}{4}\right)^2\right]+\frac{31}{16}\right\}\)(Cho vào trong ngoặc dễ thấy đc hằng đẳng thức)

\(\Rightarrow A\left(x\right)=4\left[\left(x+\frac{3}{4}\right)^2+\frac{31}{16}\right]\)(Đã sử dụng hằng đẳng thức \(A^2+2AB+B^2=\left(A+B\right)^2\))

Vì \(\left(x+\frac{3}{4}\right)^2\ge0\)(đây là điều hiển nhiên, bình phương của một số luôn lớn hơn hoặc bằng 0)

Nên \(\left(x+\frac{3}{4}\right)^2+\frac{31}{16}\ge\frac{31}{16}\)

\(\Rightarrow A\left(x\right)=4\left[\left(x+\frac{3}{4}\right)^2+\frac{31}{16}\right]\ge\frac{31}{4}\)(Nhân thêm 4 vào cả hai vế)

[A(x) sẽ nhỏ nhất nếu dấu lớn hơn hoặc bằng chuyển thành dấu bằng)]

Dấu "=" xảy ra khi và chỉ khi \(\left(x+\frac{3}{4}\right)^2=0\Leftrightarrow x+\frac{3}{4}=0\Leftrightarrow x=-\frac{3}{4}\)

\(\text{Vậy giá trị nhỏ nhất của A(x) là } \dfrac{31}4 \text{khi và chỉ khi } x=-\dfrac34 \)

25 tháng 4 2017

Khi x = -3

30 tháng 9 2019

Ta có:

a) A = x2 + 6x + 10 = (x2 + 6x + 9) + 1 = (x + 3)2 + 1 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 3 = 0 <=> x = -3

Vậy MinA = 1 <=> x = -3

b) B = 4x2 - 12x + 13 = 4(x2 - 3x + 9/4) + 4 = 4(x - 3/2)2 + 4 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2

Vậy MinB = 4 <=> x = 3/2