K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 8 2021

Do \(2x-1=0\) có 1 nghiệm \(x=\dfrac{1}{2}\) nên \(x=\dfrac{1}{2}\) là TCĐ khi và chỉ khi \(mx^2-1=0\) có nghiệm kép \(x=\dfrac{1}{2}\)

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu bài toán

AH
Akai Haruma
Giáo viên
25 tháng 8 2017

Lời giải:

Câu 1:

Lưu ý tiệm cận đứng là \(x=\frac{3}{2}\) chứ không phải \(y=\frac{3}{2}\)

Ta có \(y=\sqrt{4x^2+mx+1}-(2x-1)=\frac{4x^2+mx+1-(2x-1)^2}{\sqrt{4x^2+mx+1}+2x-1}\)

\(\Leftrightarrow y=\frac{x(m+4)}{\sqrt{4x^2+mx+1}+2x-1}\)

Để ĐTHS có tiệm cận đứng \(x=\frac{3}{2}\) thì pt \(\sqrt{4x^2+mx+1}+2x-1=0\) phải có nghiệm là \(x=\frac{3}{2}\)

\(\Leftrightarrow \sqrt{10+\frac{3m}{2}}+2=0\) (vô lý vì vế trái luôn lớn hơn 0)

Do đó không tồn tại m thỏa mãn.

AH
Akai Haruma
Giáo viên
25 tháng 8 2017

Câu 2:

Để đths có đúng một tiệm cận đứng thì có thể xảy 2 TH sau:

TH1: PT \(x^2-3x-m=0\) có nghiệm kép

\(\Leftrightarrow \Delta=9+4m=0\Leftrightarrow m=-\frac{9}{4}\)

\(y=\frac{x-1}{x^2-3x+\frac{9}{4}}=\frac{x-1}{(x-\frac{3}{2})^2}\) có TCĐ là \(x=\frac{3}{2}\) (thỏa mãn)

TH2: PT \(x^2-3x-m=0\) có hai nghiệm phân biệt trong đó có một nghiệm \(x=1\)

\(\Leftrightarrow 1^2-3.1-m=0\Leftrightarrow m=-2\)

Khi đó, \(y=\frac{x-1}{x^2-3x+2}=\frac{x-1}{(x-2)(x-1)}=\frac{1}{x-2}\) có TCĐ \(x=2\) (thỏa mãn)

Vậy tổng giá trị của $m$ thỏa mãn là:

\(\sum =\frac{-9}{4}+(-2)=\frac{-17}{4}\)

31 tháng 3 2017

Hỏi đáp Toán

31 tháng 3 2017

a) . Tập xác định : R {} ;

;

Do đó hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

b) Tiệm cận đứng ∆ : x = .

A(-1 ; ) ∈ ∆ ⇔ = -1 ⇔ m = 2.

c) m = 2 => .



23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

NV
7 tháng 5 2023

\(\lim\limits_{x\rightarrow-1^+}\dfrac{2x-1}{x+1}=-\infty\Rightarrow x=-1\) là tiệm cận đứng

\(\lim\limits_{x\rightarrow+\infty}\dfrac{2x-1}{x+1}=2\Rightarrow y=2\) là tiệm cận ngang

\(\Rightarrow P=3.\left(-1\right)^2-2=1\)

31 tháng 3 2017

a) Vì ( hoặc ) nên các đường thẳng: x = -3 và x = 3 là các tiệm cận đứng của đồ thị hàm số.

nên các đường thẳng: y = 0 là các tiệm cận ngang của đồ thị hàm số.

b) Hai tiệm cận đứng : ; tiệm cận ngang : .

c) Tiệm cận đứng : x = -1 ;

nên đồ thị hàm số không có tiệm cận ngang.

d) Hàm số xác định khi :

( hoặc ) nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

nên đường thẳng y = 1 là tiệm cận ngang (về bên phải) của đồ thị hàm số.

AH
Akai Haruma
Giáo viên
29 tháng 7 2017

Lời giải:

\(\bullet \) Nếu \(m=0\Rightarrow y=\frac{2x-1}{(1-2x)(4x^2+1)}=\frac{-1}{4x^2+1}\)

\(\lim _{x\rightarrow \infty}\frac{-1}{4x^2+1}=0\) , \(4x^2+1\neq 0\) với mọi $x$ nên đồ thị hàm số có đúng một tiệm cận ngang \(y=0\)

\(\bullet\) Nếu \(m\neq 0\) :

+) \(m=\frac{-1}{2}\) thì \(y=\frac{2}{(2x+1)(-x^2-4x+2)}\)

\(\lim _{x\rightarrow \infty}y=0\) nên ĐTHS có TCN $y=0$

\(2x+1=0\Leftrightarrow x=\frac{-1}{2}\) nên \(x=-\frac{1}{2}\) là TCĐ.

ĐTHS có nhiều hơn một tiệm cận (loại)

+) \(m\neq \frac{-1}{2}\) thì \((mx^2-2x+1)(4x^2+4m+1)\) là một hàm bậc 4 không có nghiệm \(\frac{1}{2}\)

Suy ra \(\lim _{x\rightarrow \infty}y=0\), ĐTHS có TCN $y=0$

Để ĐTHS chỉ có một tiệm cận thì \((mx^2-2x+1)(4x^2+4m+1)\neq 0\forall x\)

\(\Rightarrow \left\{\begin{matrix} \Delta_{1}'=1-m<0\\ \Delta_{2}=-(4m+1)<0\end{matrix}\right.\Rightarrow m>1\)

Vậy \(m=0\) hoặc \(m>1\)

NV
7 tháng 8 2021

Hàm có tiệm cận đứng khi và chỉ khi \(x^2-mx-2m^2=0\) vô nghiệm hoặc không có nghiệm \(x=2\)

\(\Rightarrow\left[{}\begin{matrix}\Delta=m^2+8m^2< 0\\4-2m-2m^2\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)

NV
7 tháng 8 2021

Với \(m=0\) ko thỏa mãn

Với \(m\ne0\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=-\dfrac{1}{\sqrt{m}}\)\(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=\dfrac{1}{\sqrt{m}}\)

\(\Rightarrow\) Hàm có 2 TCN khi \(\sqrt{m}\) xác định \(\Rightarrow m>0\)