Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\lim\limits\left(\sqrt[3]{1-n^2-8n^3}+2n\right)\)
\(=\lim\limits\dfrac{1-n^2-8n^3+8n^3}{\left(\sqrt[3]{1-n^2-8n^3}\right)^2-2n.\sqrt[3]{1-n^2-8n^3}+4n^2}\)
\(=\lim\limits\dfrac{1-n^2}{\left(1-n^2-8n^3\right)^{\dfrac{2}{3}}-2n.\left(1-n^2-8n^3\right)^{\dfrac{1}{3}}+4n^2}\)
\(=\lim\limits\dfrac{-\dfrac{n^2}{n^2}}{\dfrac{\left(-8n^3\right)^{\dfrac{2}{3}}}{n^2}-\dfrac{2n.\left(-8n^3\right)^{\dfrac{1}{3}}}{n^2}+\dfrac{4n^2}{n^2}}=\dfrac{-1}{4+4+4}=-\dfrac{1}{12}\)
a/ Bạn coi lại đề bài, 3n^2 +n^2 thì bằng 4n^2 luôn chứ ko ai cho đề bài như vậy cả
b/ \(\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{3n}{n^3}+\dfrac{1}{n^3}}{-\dfrac{n^3}{n^3}+\dfrac{2n}{n^3}}=-1\)
c/ \(=\lim\limits\dfrac{-\dfrac{2n^3}{n^2}+\dfrac{3n}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}=\lim\limits\dfrac{-2n}{-1}=+\infty\)
d/ \(=\lim\limits\left[n\left(1+1\right)\right]=+\infty\)
e/ \(\lim\limits\left[2^n\left(\dfrac{2n}{2^n}-3+\dfrac{1}{2^n}\right)\right]=\lim\limits\left(-3.2^n\right)=-\infty\)
f/ \(=\lim\limits\dfrac{4n^2-n-4n^2}{\sqrt{4n^2-n}+2n}=\lim\limits\dfrac{-\dfrac{n}{n}}{\sqrt{\dfrac{4n^2}{n^2}-\dfrac{n}{n^2}}+\dfrac{2n}{n}}=-\dfrac{1}{2+2}=-\dfrac{1}{4}\)
g/ \(=\lim\limits\dfrac{n^2+3n-1-n^2}{\sqrt{n^2+3n-1}+n}+\lim\limits\dfrac{n^3-n^3+n}{\sqrt[3]{\left(n^3-n\right)^2}+n.\sqrt[3]{n^3-n}+n^2}\)
\(=\lim\limits\dfrac{\dfrac{3n}{n}-\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}-\dfrac{1}{n^2}}+\dfrac{n}{n}}+\lim\limits\dfrac{\dfrac{n}{n^2}}{\dfrac{\sqrt[3]{\left(n^3-n\right)^2}}{n^2}+\dfrac{n\sqrt[3]{n^3-n}}{n^2}+\dfrac{n^2}{n^2}}\)
\(=\dfrac{3}{2}+0=\dfrac{3}{2}\)
Cai bai ben duoi bai nay y. Doc hieu chet lien. Ban nen xai go cong thuc de toi uu hon
\(C=\lim\limits\dfrac{n^3+1}{n\left(2n+1\right)^2}=\lim\limits\dfrac{n^3+1}{n\left(4n^2+4n+1\right)}=\lim\limits\dfrac{n^3+1}{4n^3+4n^2+n}=\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{1}{n^3}}{\dfrac{4n^3}{n^3}+\dfrac{4n^2}{n^3}+\dfrac{n}{n^3}}=\dfrac{1}{4}\)
Xai cai nay go cong thuc di ban :v Doc ko hieu