K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

ta có \(a-b=5\) \(\Rightarrow a=b+5;b=a-5\)

\(\Rightarrow-\frac{4a-b}{3a+5}-\frac{3b-a}{2b-5}\)

\(=-\frac{4a-\left(a-5\right)}{3a+5}-\frac{3b-\left(b+5\right)}{2b-5}\)

\(=-\frac{4a-a+5}{3a+5}-\frac{3b-b-5}{2b-5}\)

\(=-\frac{3a+5}{3a+5}-\frac{2b-5}{2b-5}=-1-1=-2\)

8 tháng 5 2018

cách khác:

\(B=\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}\)

\(=\frac{3a-2b}{2a+a-2b}+\frac{3b-a}{b-a+2b}\)  (thay 5 = a - 2b)

\(=\frac{3a-2b}{3a-2b}+\frac{3b-a}{3b-a}\)

\(=1+1=2\)

8 tháng 5 2018

Biết a - 2b = 5 tính giá trị biểu thức:

\(B=\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}\)

\(=\frac{2a+\left(a-2b\right)}{2a+5}+\frac{3b-a}{b-5}\)

\(=\frac{2a+5}{2a+5}+\frac{b-5}{b-5}\)

\(=1+1=2\)

Vậy B = 2

9 tháng 1 2018

a-2b=5 => a=2b+5

Thay a=2b+5 vào B thì : 

B = 6b+15-2b/4b+10+5 + 3b-2b-5/b-5

   = 4b+15/4b+15 + b-5/b-5 = 1+1 = 2

Tk mk nha

9 tháng 1 2018

Ta có : a - 2b = 5 \(\Rightarrow\)2b = a - 5

          a - 2b = 5 \(\Rightarrow\)a = 2b + 5

Thay vào , ta được :

\(B=\frac{3a-\left(a-5\right)}{2a+5}+\frac{3b-\left(2b+5\right)}{b-5}\)

\(B=\frac{3a-a+5}{2a+5}+\frac{3b-2b-5}{b-5}\)

\(B=\frac{2a+5}{2a+5}+\frac{b-5}{b-5}\)

\(B=1+1=2\)

20 tháng 7 2017

Từ a-2b=5  =>  a = 2b+5 

Thay 2b + 5 vào a, ta có biểu thức  :

\(\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}=\frac{3.\left(2b+5\right)-2b}{2.\left(2b+5\right)+5}+\frac{3b-\left(2b+5\right)}{b-5}\)

\(=\frac{6b+15-2b}{4b+10+5}+\frac{3b-2b-5}{b-5}=\frac{4b+15}{4b+15}+\frac{b-5}{b-5}=1+1=2\)

19 tháng 7 2017

thay a-2b vào biểu thức cần tính

17 tháng 12 2016

P=3a-2b\2a+5 + 3b-a\b-5

=2a+a-2b\2a-5 + -a+2b+b\b-5

=2a+(a-2b)\2a-5 + -(a-2b)+b

=2a+5\2a-5 + -5+b\b-5

=-(2a-5)\(2a-5) + (b-5)\(b-5)

=-1+1=0

17 tháng 12 2016

Bài của mình đây , ko biết có đúng ko

3 tháng 12 2016

Từ \(a-2b=5\Rightarrow a=5+2b\) thay vào P ta có:

\(P=\frac{3\left(2b+5\right)-2b}{2\left(2b+5\right)+5}+\frac{3b-\left(2b+5\right)}{b-5}\)\(=\frac{6b+15-2b}{4b+10+5}+\frac{3b-2b+5}{b-5}\)

\(=\frac{4b+15}{4b+15}+\frac{b-5}{b-5}=1+1=2\)

27 tháng 11 2018

\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)

\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)

\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)

\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)

\(=\frac{3a^2-b^2}{b^2}\)

\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)