K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình lại ra là 15a+21 (sau khi rút gọn thành: \(ax^2-axy+xy^2+y^3\))

19 tháng 9 2020

ax( x - y ) + y2( x + y )

Thế x = 3 ; y = -2 ta được :

a.3.( 3 + 2 ) + (-2)2( 3 - 2 )

= a.3.5 + 4.1

= 15a + 4 

3 tháng 1 2020

có ai ko 

giúp mình với

3 tháng 1 2020

Để a xác định thì :\(x^2-2x\)khác 0

Nên \(x\left(x-2\right)\)khác 0

\(\Rightarrow x\)khacs0 và x khác 2

\(Ta\)\(có:\)\(A=\frac{x^2-4}{x^2-2x}=\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}=\frac{x+2}{x}\)

Với x khác 0, x khác 2; x thuộc Z nên x+2 thuộc Z

Lại có :\(\frac{x+2}{x}=\frac{x}{x}+\frac{2}{x}=1+\frac{2}{x}\)

Để A thuộc Z thì \(x\varepsilon\)Ư(2)

Mà Ư(2) là 2 và -2

Vậy x=2 và x=-2 thì A thuộc Z

Chúc bạn học tốt nhé!

25 tháng 7 2020

Thế x = 3 , y = -5 vào biểu thức ta được :

a.3[ 3 - ( -5 ) ] + ( -5 )4( 3 - 5 )

= a.3.8 + 625.( -2 )

= 24a - 1250

\(ax\left(x-y\right)+y^3\left(x+y\right)ax\left(x-y\right)+y3\left(x+y\right)\) tại x=2,y-3

\(ax\left(x-y\right)+y3\left(x+y\right)+axy^3\left(x^2-y^2\right)\)

Thay x=2,y=-3, có:

\(a2\left(2+3\right)-3.3\left(2-3\right)-a.2.3^3\left(2^2-3^3\right)\)

\(10a+9+270a\)

\(280a=-9\)

\(a=-\frac{9}{280}\)

19 tháng 9 2020

Sửa đề ?

\(ax\left(x-y\right)+y^3\left(x+y\right)-ax\left(x-y\right)+y^3\left(x+y\right)\)

\(=y^3\left(x+y\right)+y^3\left(x+y\right)\)

Tại x=2 và y=-3

\(\Rightarrow\left(-3\right)^3\left(2+\left(-3\right)\right)+\left(-3\right)^3\left(2+\left(-3\right)\right)=54\)

22 tháng 7 2019

C = y( x^4-y^4)-x^4y+y^5

    =x^4y-y^5-x^4y+y^5

    =0

Vậy...........................................

22 tháng 7 2019

Bài giải ....

C = y . ( x2 - y2 ) ( x2 + y2) - y ( x4 - y4 )

C = y . \([(x^2)^2-\left(x^2\right)^2]\)- y . ( x4 - y4 )

C = y . ( x4 - y4 ) - y . ( x4 - y4 )

C = 0

Ta có: x+y+z=0

⇔(x+y+z)2=0⇔(x+y+z)2=0

⇔x2+y2+z2+2xy+2yz+2xz=0⇔x2+y2+z2+2xy+2yz+2xz=0(1)

Ta có: K=x2+y2+z2(x−y)2+(y−z)2+(z−x)2K=x2+y2+z2(x−y)2+(y−z)2+(z−x)2

=x2+y2+z2x2−2xy+y2+y2−2yz+z2+z2−2xz+x2=x2+y2+z2x2−2xy+y2+y2−2yz+z2+z2−2xz+x2

=x2+y2+z23x2+3y2+3z2−x2−y2−z2−2xy−2yz−2xz=x2+y2+z23x2+3y2+3z2−x2−y2−z2−2xy−2yz−2xz

=x2+y2+z23(x2+y2+z2)−(x2+y2+z2+2xy+2yz−2xz)=x2+y2+z23(x2+y2+z2)−(x2+y2+z2+2xy+2yz−2xz)

=x2+y2+z23(x2+y2+z2)=13=x2+y2+z23(x2+y2+z2)=13

Vậy: K=13K=13

11 tháng 9 2020

x( 1 + y ) - y( xy - 1 ) - x2y

= x + xy - xy2 + y - x2y

= ( x + y ) + ( xy - xy2 - x2y )

= ( x + y ) + xy( 1 - y - x )

= ( x + y ) + xy[ -( x + y - 1 ) ]

= ( x + y ) - xy( x + y - 1 ) (*)

Với x + y = 5 ; xy = 2

(*) = 5 - 2( 5 - 1 ) = 5 - 2.4 = -3

Bài làm :

Đặt  \(A=x\left(1+y\right)-y\left(xy-1\right)-x^2y\)

\(=x+xy-xy^2+y-x^2y\)

\(=\left(x+y\right)+\left(xy-xy^2-x^2y\right)\)

\(=\left(x+y\right)+xy\left(1-y-x\right)\)

\(=\left(x+y\right)+xy\left[1-\left(y+x\right)\right]\)

Thay x + y = 5 và xy = 2 vào biểu thức trên , ta có :

\(A=5+2\left(1-5\right)\)

\(=5+2.\left(-4\right)\)

\(=-3\)

Vậy giá trị của biểu thức bằng -3 khi x + y = 5 và xy = 2 .

Học tốt