Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
A= x(x-6)+10= x² - 6x + 10 = x² - 6x + 9 + 1 = (x - 3)² + 1
Vì (x - 3)² ≥ 0
---> (x - 3)² + 1 > 0
Vậy x(x + 6) + 10 luôn dương (đpcm)
B=x2-2x+9y2-6y+3=(x-1)2+(3y-1)2+1>0
Bài 2 :
A=x2-4x+1=x2-4x+4-3=(x-2)2-3
Vì (x-2)2≥≥0∀∀x ⇒⇒(x-2)2-3≥≥-3∀x
Vậy min A = -3
B=4x2+4x+11=4(x2+x+11/4)=4(x2+2.x.1/2+1/4+10/4)=4(x+1/2)2+10
=> B min = 10
C=(x-1)(x+3)(x+2)(x+6)
C=(x-1)(x+6)(x+3)(x+2)
C=(x2+5x-6)(x2+5x+6)
Đặt x2+5x+6=t . Ta có:
C= (t-12).t=t2-12t=t2-12+36-36=(t-6)2-36
C= (x2+5x+6-6)2-36=(x2+5x)2-36
Vì (x2+5x)2≥0∀x ⇒⇒(x2+5x)2-36≥-36∀x
Vậy min C= -36
D=5-8x-x2=-(x2+8x-5)=-(x2+8x+16-21)=-[(x+4)2−21][(x+4)2−21]
D=-(x+4)2+21=21-(x+4)2
Vì (x+4)2≥0∀x⇒⇒21-(x+4)2≤21∀x
Vậy max D=21
E=4x-x2+1=-(x2-4x-1)=-(x2-4x+4-5)=-[(x−2)2−5][(x−2)2−5]=-(x-2)2+5=5-(x-2)2
Vì (x-2)2≥0∀x⇒⇒5-(x-2)2≤5∀x
Vậy max E=5
*∀x : với mọi x
a/ta gọi biểu thức trên là A.
ta có: A=1+2+22+...+2100
2A= 2x(1+2+22+...+2100)
2A= 2x1+2x2+22x2+...+2100x2
2A= 2+22+23+....+2101
2A-A=A=(2+22+23+....+2101)-(1+2+22+...+2100)
A= 2101-1
b/ làm tương tụ như câu a nhưng cuối cùng phải thêm '':2'' (vì lúc đó ta tính ra 3A - A =2A nên phải chia 2)
22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222q22222222222222222222222222222222222222222222222222222222222222222222222222222222222222
Có 20/39>1/2; 18/41<1/2 suy ra 20/39>18/41
22/27>22/29
18/43 = 1- 25/43
14/39 = 1- 25/ 39
mà 25/43< 25/43 suy ra 18/43> 14/39 (vì cùng 1 số mà trừ đi số nhỏ hơn thì sẽ lớn hơn số đó mà lại đem trừ đi số lớn hơn)
Vậy A>B
CÂU 10:
a, -x - 84 + 214 = -16 b, 2x -15 = 40 - ( 3x +10 )
x = - ( -16 -214 + 84 ) 2x + 3x = 40 -10 +15
x = 16 + 214 - 84 5x = 45
x = 146 x = 9
c, \(|-x-2|-5=3\) d, ( x - 2)(2x + 1) = 0
\(|-x-2|=8\) => x - 2 = 0 hoặc 2x + 1 = 0
=> - x - 2 = 8 hoặc x + 2 = 8 \(\orbr{\begin{cases}x-2=0\\2x+1=0\end{cases}=>}\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)
\(\orbr{\begin{cases}-x-2=8\\x+2=8\end{cases}=>\orbr{\begin{cases}x=-10\\x=6\end{cases}}}\)
Chọn B