Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ phương trình trên , suy ra :
\(\left(2a-1\right)^2=\left(a^2-2a-3\right)+2xy\)
\(\Leftrightarrow4a^2-4a+1=\left(a^2-2a-3\right)+2xy\)
\(\Leftrightarrow3a^2-2a+4=2xy\)
\(\Leftrightarrow3\left(a^2-\frac{2}{3}a+\frac{4}{3}\right)=2xy\)
\(\Leftrightarrow3\left(a^2-\frac{2}{3}a+\frac{1}{9}\right)+\frac{11}{3}=2xy\)
\(\Leftrightarrow3\left(a-\frac{1}{3}\right)^2+\frac{11}{3}=2xy\)
Nhận thấy \(VT\ge\frac{11}{3}\)suy ra \(2xy\ge\frac{11}{3}\) => \(xy\ge\frac{11}{6}\)
Vậy Min(xy) = 11/6 <=> a = 1/3
Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2} (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
[2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2} thì xy đạt giá trị nhỏ nhất.
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}S=2a-1\\S^2-2P=a^2+2a-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}S=2a-1\\P=\frac{3a^2-6a+4}{2}\end{cases}}\)
Để hệ có nghiệm thì
\(S^2\ge4P\)
\(\Leftrightarrow\frac{4-\sqrt{2}}{2}\le a\le\frac{4+\sqrt{2}}{2}\)
Giờ tìm giá trị nhỏ nhất của
\(P=\frac{3a^2-6a+4}{2}\)dễ thấy \(P_{min}\)tại \(a=\frac{4-\sqrt{2}}{2}\)(Đoạn này không khó nên tự làm nha)
+Tìm điều kiện để hệ có nghiệm:
\(\left(x-y\right)^2\ge0\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow2\left(m^2+2m-3\right)\ge\left(2m-1\right)^2\)
\(\Leftrightarrow-2m^2+8m-7\ge0\)
\(\Leftrightarrow\frac{4-\sqrt{2}}{2}\le m\le\frac{4+\sqrt{2}}{2}\)
+Tìm m để xy nhỏ nhất:
\(xy=\frac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\frac{\left(2m-1\right)^2-\left(m^2+2m-3\right)}{2}=\frac{3}{2}\left(m^2-2m\right)+2\)
\(=\frac{3}{2}\left(m-1\right)^2+\frac{1}{2}\)
Để xy nhỏ nhất thì \(\left(m-1\right)^2\)phải nhỏ nhất;
\(m\ge\frac{4-\sqrt{2}}{2}\approx1,29\)
\(\Rightarrow m-1\ge\frac{4-\sqrt{2}}{2}-1=1-\frac{\sqrt{2}}{2}>0\)
\(\Rightarrow\left(m-1\right)^2\ge\left(1-\frac{\sqrt{2}}{2}\right)^2\)
Dấu bằng xảy ra khi \(m=\frac{4-\sqrt{2}}{2}\)
Đây là giá trị m cần tìm
b) hệ phương trình có nghiệm thỏa mãn 3x-7y=19
=> x,y là nghiệm của hệ phương trình \(\hept{\begin{cases}x-3y=5\left(1\right)\\3x-7y=19\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow3x-9y=15\Leftrightarrow3x=15+9y\)
thay 3x=15+9y zô (4) ta đc
\(15+9y-7y=19\)
=>\(2y=4=>y=2\)
\(=>x-3.2=5=>x=11\)
thay x=11 , y=6 ta có
\(4.11+2=13.m-32\)
=> m=6
b)\(\hept{\begin{cases}x-3y=5\left(3\right)\\4x+y=13m-32\left(4\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow4x-12y=20\Leftrightarrow4x=20+12y\)
thay zô (4) , rồi làm biến đổi như câu a) nhá
xong => y=m-4
=> x=5+3y
=> x=5+3(m-4)=3m-7
\(\hept{\begin{cases}x>2\\y< 3\end{cases}\Leftrightarrow\hept{\begin{cases}3m-7>2\\m-4< 3\end{cases}\Leftrightarrow}\hept{\begin{cases}m>3\\m< 7\end{cases}\Leftrightarrow}3< m< 7}\)
c) Thay x=3m-7 ; y=m-4 ta có
\(S=\left(3m-7\right)^2+6\left(m-4\right)+2030\)
\(=9m^2-42m+49+6m-24+2030\)
\(=9m^2-36m+2055=9m^2-2.3m.6+36+2019\)
\(=\left(3m-6\right)^2+2019\ge2019\forall m\)
dấu = xảy ra khi 3m-6=0 => m=2
zậy ...