K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

Từ phương trình trên , suy ra :

\(\left(2a-1\right)^2=\left(a^2-2a-3\right)+2xy\)

\(\Leftrightarrow4a^2-4a+1=\left(a^2-2a-3\right)+2xy\)

\(\Leftrightarrow3a^2-2a+4=2xy\)

\(\Leftrightarrow3\left(a^2-\frac{2}{3}a+\frac{4}{3}\right)=2xy\)

\(\Leftrightarrow3\left(a^2-\frac{2}{3}a+\frac{1}{9}\right)+\frac{11}{3}=2xy\)

\(\Leftrightarrow3\left(a-\frac{1}{3}\right)^2+\frac{11}{3}=2xy\)

Nhận thấy \(VT\ge\frac{11}{3}\)suy ra  \(2xy\ge\frac{11}{3}\) => \(xy\ge\frac{11}{6}\)

Vậy Min(xy) = 11/6 <=> a = 1/3

2 tháng 12 2021

Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2}      (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
        [2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2}  thì xy đạt giá trị nhỏ nhất.

4 tháng 2 2020

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}S=2a-1\\S^2-2P=a^2+2a-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}S=2a-1\\P=\frac{3a^2-6a+4}{2}\end{cases}}\)

Để hệ có nghiệm thì

\(S^2\ge4P\)

\(\Leftrightarrow\frac{4-\sqrt{2}}{2}\le a\le\frac{4+\sqrt{2}}{2}\)

Giờ tìm giá trị nhỏ nhất của 

\(P=\frac{3a^2-6a+4}{2}\)dễ thấy \(P_{min}\)tại \(a=\frac{4-\sqrt{2}}{2}\)(Đoạn này không khó nên tự làm nha)

9 tháng 8 2016

+Tìm điều kiện để hệ có nghiệm: 

\(\left(x-y\right)^2\ge0\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Rightarrow2\left(m^2+2m-3\right)\ge\left(2m-1\right)^2\)

\(\Leftrightarrow-2m^2+8m-7\ge0\)

\(\Leftrightarrow\frac{4-\sqrt{2}}{2}\le m\le\frac{4+\sqrt{2}}{2}\)

+Tìm m để xy nhỏ nhất:

\(xy=\frac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\frac{\left(2m-1\right)^2-\left(m^2+2m-3\right)}{2}=\frac{3}{2}\left(m^2-2m\right)+2\)

\(=\frac{3}{2}\left(m-1\right)^2+\frac{1}{2}\)

Để xy nhỏ nhất thì \(\left(m-1\right)^2\)phải nhỏ nhất;

\(m\ge\frac{4-\sqrt{2}}{2}\approx1,29\)

\(\Rightarrow m-1\ge\frac{4-\sqrt{2}}{2}-1=1-\frac{\sqrt{2}}{2}>0\)

\(\Rightarrow\left(m-1\right)^2\ge\left(1-\frac{\sqrt{2}}{2}\right)^2\)

Dấu bằng xảy ra khi \(m=\frac{4-\sqrt{2}}{2}\)

Đây là giá trị m cần tìm

1 tháng 4 2020

b) hệ phương trình có nghiệm thỏa mãn 3x-7y=19

=> x,y là nghiệm của hệ phương trình \(\hept{\begin{cases}x-3y=5\left(1\right)\\3x-7y=19\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow3x-9y=15\Leftrightarrow3x=15+9y\)

thay 3x=15+9y zô (4) ta đc

\(15+9y-7y=19\)

=>\(2y=4=>y=2\)

\(=>x-3.2=5=>x=11\)

thay x=11 , y=6 ta có

\(4.11+2=13.m-32\)

=> m=6

b)\(\hept{\begin{cases}x-3y=5\left(3\right)\\4x+y=13m-32\left(4\right)\end{cases}}\)

\(\left(3\right)\Leftrightarrow4x-12y=20\Leftrightarrow4x=20+12y\)

thay zô (4) , rồi làm biến đổi như câu a) nhá

xong => y=m-4

=> x=5+3y

=> x=5+3(m-4)=3m-7

\(\hept{\begin{cases}x>2\\y< 3\end{cases}\Leftrightarrow\hept{\begin{cases}3m-7>2\\m-4< 3\end{cases}\Leftrightarrow}\hept{\begin{cases}m>3\\m< 7\end{cases}\Leftrightarrow}3< m< 7}\)

c) Thay x=3m-7 ; y=m-4 ta có

\(S=\left(3m-7\right)^2+6\left(m-4\right)+2030\)

\(=9m^2-42m+49+6m-24+2030\)

\(=9m^2-36m+2055=9m^2-2.3m.6+36+2019\)

\(=\left(3m-6\right)^2+2019\ge2019\forall m\)

dấu = xảy ra khi 3m-6=0 => m=2 

zậy ...

22 tháng 5 2018

súc vật tự đăng tự trả lời

5 tháng 8 2019

MN ƠI GIÚP E MAI E ĐI HOK RỒ

5 tháng 8 2019

GIÚP E MN OEWI

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI