Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x = \(\frac{2a}{2m}\)< \(\frac{a+b}{2m}\)= z
y = \(\frac{2b}{2m}\)> \(\frac{a+b}{2m}\)= z
Do x < y => a/m < b/m
=> a/m + a/m < a/m + b/m < b/m + b/m
=> 2x < a+b/m < 2y
=> x < a+b/m : 2 < 2y
=> x < a+b/m . 1/2 < y
=> x < a+b/2m < y
Chứng tỏ ...
ta có: x < y hay a/m < b/m => a < b
so sánh x,y,z ta chuyển chúng cùng mẫu: 2m
x = a/m = 2a / 2m và y = b/m = 2b / 2m và Z = (a + b) / 2m
* Mà a < b :
=> a + a < b + a
hay 2a < b + a
=> x < Z (1)
* mà a < b:
=> a + b < b + b
hay a + b < 2b
=> Z < y (2)
từ (1) và (2) => nếu chọn Z = (a + b) / 2m thì ta có x < Z < y
Câu hỏi của Trần Khởi My - Toán lớp 7 - Học toán với OnlineMath
Tham khảo nhé
biết đường mà cảm ơn đi, hahaha:
theo đề bài x và y đã cho suy ra: a=x.m và b=y.m. Nên ta thay vào z sẽ có a+b/2m = x.m+y.m=2m
x=a/m suy ra x cũng bằng 2a/2m nên bằng 2xm/2m...Mà x.m+y.m (dòng trên) lớn hơn 2xm do y>x nên ta được z>x
Tương tự với y
Vậy x < z < y (đpcm) haha ♥
\(x< y\)
\(\Rightarrow\frac{a}{m}< \frac{b}{m};m>0\)
\(\Rightarrow a< b\)
\(\Rightarrow\frac{a+a}{m}< \frac{a+b}{m}\)
\(\Rightarrow\frac{a+a}{2m}< \frac{a+b}{2m}\)
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\)
\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\)
\(\Rightarrow x< z\left(1\right)\)
Tương tự lại có :
\(\frac{a+b}{m}< \frac{b+b}{m}\)
\(\Rightarrow\frac{a+b}{2m}< \frac{b+b}{2m}\)
\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\)
\(\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\)
\(\Rightarrow z< y\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow x< z< y\)
Vậy \(x< z< y.\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
do \(m>0,x< y\Rightarrow x< \frac{x+y}{2}< y\Leftrightarrow x< \frac{1}{2}\left(\frac{a}{m}+\frac{b}{m}\right)< y\Leftrightarrow x< \frac{\left(a+b\right)}{2m}< y\)hay \(x< z< y\)