Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\sin (\frac{\pi t}{18}-\frac{\pi}{6})\leq 1$ với mọi $t\in [0;24]$
$\Rightarrow h\leq 2.1+5=7$
Vậy $h_{\max}=7\Leftrightarrow \sin (\frac{\pi t}{18}-\frac{\pi}{6})=1$
$\Leftrightarrow \frac{\pi t}{18}-\frac{\pi}{6})=\frac{\pi}{2}+2k\pi$ với $k$ nguyên
$\Leftrightarrow \frac{t}{18}-\frac{1}{6}=\frac{1}{2}+2k$ với $k$ nguyên
$\Leftrightarrow t=12+36k$ với $k$ nguyên.
Do $t\in [0;24]$ nên $t=12$
Đáp án C.
\(h=3cos\left(\dfrac{\pi t}{6}+\dfrac{\pi}{3}\right)+12\le3.1+12=15\left(m\right)\)
" = " \(\Leftrightarrow\dfrac{\pi t}{6}+\dfrac{\pi}{3}=2k\pi\left(k\in Z\right)\) \(\Leftrightarrow\dfrac{t}{6}+\dfrac{1}{3}=2k\Leftrightarrow t=12k-2\)
t min ; t > 0 \(\Rightarrow k=1\) thì t = 10 (h)
+) Độ sâu của mực nước là 15m thì h = 15.
Khi đó
\(\begin{array}{l}15 = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = 1\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = \cos 0\\ \Leftrightarrow \frac{{\pi t}}{6} + 1 = k2\pi \\ \Leftrightarrow t = \frac{{6\left( {k2\pi - 1} \right)}}{\pi };k \in Z\end{array}\)
Vì \(0 \le t < 24\) nên
\(\begin{array}{l}0 \le \frac{{6\left( {k2\pi - 1} \right)}}{\pi } \le 24\\ \Leftrightarrow 0 < k \le 2\end{array}\)
Lại do \(k \in Z \Rightarrow k \in \left\{ {1;2} \right\} \Rightarrow t \in \left\{ {\frac{{6\left( {2\pi - 1} \right)}}{\pi };\frac{{6\left( {4\pi - 1} \right)}}{\pi }} \right\}\)
+) Độ sâu của mực nước là 9m thì h = 9.
Khi đó
\(\begin{array}{l}9 = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = - 1\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = \cos \pi \\ \Leftrightarrow \frac{{\pi t}}{6} + 1 = \pi + k2\pi \\ \Leftrightarrow t = \frac{{6\left( {k2\pi + \pi - 1} \right)}}{\pi };k \in Z\end{array}\)
Vì \(0 \le t < 24\) nên
\(\begin{array}{l}0 \le \frac{{6\left( {k2\pi + \pi - 1} \right)}}{\pi } \le 24\\ \Leftrightarrow 0 < k \le 1\end{array}\)
Lại do \(k \in Z \Rightarrow k = 1 \Rightarrow t = \frac{{6\left( {3\pi - 1} \right)}}{\pi }\)
+) Độ sâu của mực nước là 10,5m thì h = 10,5.
Khi đó
\(\begin{array}{l}10,5 = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = - \frac{1}{2}\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = \cos \frac{{2\pi }}{3}\\ \Leftrightarrow \left[ \begin{array}{l}\frac{{\pi t}}{6} + 1 = \frac{{2\pi }}{3} + k2\pi \\\frac{{\pi t}}{6} + 1 = - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}t = \frac{{6\left( {\frac{{2\pi }}{3} + k2\pi - 1} \right)}}{\pi };k \in Z\\t = \frac{{6\left( { - \frac{{2\pi }}{3} + k2\pi - 1} \right)}}{\pi };k \in Z\end{array} \right.\end{array}\)
Với \(t = \frac{{6\left( {\frac{{2\pi }}{3} + k2\pi - 1} \right)}}{\pi };k \in Z\)
Vì \(0 \le t < 24\) nên
\(\begin{array}{l}0 \le \frac{{6\left( {\frac{{2\pi }}{3} + k2\pi - 1} \right)}}{\pi } \le 24\\ \Leftrightarrow 0 \le k \le 2\end{array}\)
Lại do \(k \in Z \Rightarrow k \in \left\{ {0;1;2} \right\} \Rightarrow t \in \left\{ {\frac{{6\left( {\frac{{2\pi }}{3} - 1} \right)}}{\pi };\frac{{6\left( {\frac{{8\pi }}{3} - 1} \right)}}{\pi };\frac{{6\left( {\frac{{14\pi }}{3} - 1} \right)}}{\pi }} \right\}\)
Với \(t = \frac{{6\left( { - \frac{{2\pi }}{3} + k2\pi - 1} \right)}}{\pi };k \in Z\)
Vì \(0 \le t < 24\) nên
\(\begin{array}{l}0 \le \frac{{6\left( { - \frac{{2\pi }}{3} + k2\pi - 1} \right)}}{\pi } \le 24\\ \Leftrightarrow 0 < k \le 2\end{array}\)
Lại do \(k \in Z \Rightarrow k \in \left\{ {1;2} \right\} \Rightarrow t \in \left\{ {\frac{{6\left( { - \frac{{2\pi }}{3} - 1} \right)}}{\pi };\frac{{6\left( {\frac{{4\pi }}{3} - 1} \right)}}{\pi };\frac{{6\left( {\frac{{10\pi }}{3} - 1} \right)}}{\pi }} \right\}\)
Ta có
\(\begin{array}{l}t = 0 \Rightarrow \omega t = 0\\t = \frac{T}{4} \Rightarrow \omega t = \omega .\frac{{\frac{{2\pi }}{\omega }}}{4} = \frac{\pi }{2}\\t = \frac{T}{2} \Rightarrow \omega t = \omega .\frac{{\frac{{2\pi }}{\omega }}}{2} = \pi \\t = \frac{{3T}}{4} \Rightarrow \omega t = \omega .\frac{{3.\frac{{2\pi }}{\omega }}}{4} = \frac{{3\pi }}{2}\\t = T \Rightarrow \omega t = \omega .\frac{{2\pi }}{\omega } = 2\pi \end{array}\)
a) \(A = 3cm,\varphi = 0\)
+) Với t=0 thì \(x = 3\cos \left( {\omega .0 + 0} \right) = 3\)
+) Với \(t = \frac{T}{4}\)thì \(x = 3\cos \left( {\frac{\pi }{2} + 0} \right) = 0\)
+) Với \(t = \frac{T}{2}\)thì \(x = 3\cos \left( {\pi + 0} \right) = - 3\)
+)Với \(t = \frac{{3T}}{4}\)thì \(x = 3\cos \left( {\frac{{3\pi }}{2} + 0} \right) = 0\)
+Với \(t = T\)thì \(x = 3\cos \left( {2\pi + 0} \right) = 3\)
b) \(A = 3cm,\varphi = - \frac{\pi }{2}\)
+) Với t=0 thì \(x = 3\cos \left( {0 - \frac{\pi }{2}} \right) = 0\)
+) Với \(t = \frac{T}{4}\)thì \(x = 3\cos \left( {\frac{\pi }{2} - \frac{\pi }{2}} \right) = 3\)
+) Với \(t = \frac{T}{2}\)thì \(x = 3\cos \left( {\pi - \frac{\pi }{2}} \right) = 0\)
+)Với \(t = \frac{{3T}}{4}\)thì \(x = 3\cos \left( {\frac{{3\pi }}{2} - \frac{\pi }{2}} \right) = 3\)
+Với \(t = T\)thì \(x = 3\cos \left( {2\pi - \frac{\pi }{2}} \right) = 0\)
c) \(A = 3cm,\varphi = \frac{\pi }{2}\)
+) Với t=0 thì \(x = 3\cos \left( {0 + \frac{\pi }{2}} \right) = 0\)
+) Với \(t = \frac{T}{4}\)thì \(x = 3\cos \left( {\frac{\pi }{2} + \frac{\pi }{2}} \right) = 3\)
+) Với \(t = \frac{T}{2}\)thì \(x = 3\cos \left( {\pi + \frac{\pi }{2}} \right) = 0\)
+)Với \(t = \frac{{3T}}{4}\)thì \(x = 3\cos \left( {\frac{{3\pi }}{2} + \frac{\pi }{2}} \right) = 3\)
+Với \(t = T\)thì \(x = 3\cos \left( {2\pi + \frac{\pi }{2}} \right) = 0\)
Vận tốc tại thời điểm t là \(v\left( t \right) = s'\left( t \right) = 0,5.2\pi \cos \left( {2\pi t + \frac{\pi }{5}} \right) = \pi \cos \left( {2\pi t + \frac{\pi }{5}} \right)\)
Gia tốc tức thời của vật tại thời điểm t là \(a\left( t \right) = v'\left( t \right) = - \pi .2\pi \sin \left( {2\pi t + \frac{\pi }{5}} \right) = - 2{\pi ^2}\sin \left( {2\pi t + \frac{\pi }{5}} \right)\)
Tại thời điểm t = 5 giây, gia tốc của vật là \(a\left( 5 \right) = - 2{\pi ^2}\sin \left( {2\pi .5 + \frac{\pi }{5}} \right) \approx - 11,6\)(cm/s2)
Vật đi qua vị trí cân bằng thì x = 0
Khi đó
\(\begin{array}{l}2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi \\\Leftrightarrow t = \frac{2\pi }{15} + \frac{{k\pi }}{5} ;k \in Z\end{array}\)
Do khoảng thời gian từ 0 đến 6 giây nên \(t \in \left[ {0;6} \right]\)
\(\begin{array}{l}0 \le \ \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5} \le \ 6;k \in Z\\ \Rightarrow \frac{-2 }{3}\le \ k \le \ \frac{90 - 2\pi}{3\pi};k \in Z\end{array}\)
Do \(k \in Z\) nên \(k \in \left\{ {0;1;2;3;4;5;6;7;8} \right\}\)
Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.
a) Vận tốc tức thời của con lắc: \(v(t) = - 4\pi \sin \left( {\pi t - \frac{{2\pi }}{3}} \right)\)
Gia tốc tức thời của con lắc: \(a(t) = - 4{\pi ^2}\cos \left( {\pi t - \frac{{2\pi }}{3}} \right)\)
b) Tại vận tốc tức thời của con lắc bằng 0, ta có:
\( - 4\pi \sin \left( {\pi t - \frac{{2\pi }}{3}} \right) = 0 \Leftrightarrow \sin \left( {\pi t - \frac{{2\pi }}{3}} \right) = 0 \Leftrightarrow \pi t - \frac{{2\pi }}{3} = 0 \Leftrightarrow t = \frac{2}{3}\)
Với \(t = \frac{2}{3} \Rightarrow a(t) = - \,4{\pi ^2}\cos \left( {\pi .\frac{2}{3} - \frac{2}{3}\pi } \right) = - \,4{\pi ^2}\)
Ta có: \(x\left( t \right) = {x_1}\left( t \right) + {x_2}\left( t \right) = 2\left[ {\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) + \cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)} \right]\)
\(2\left[ {\cos \left( {\frac{{\frac{\pi }{3}t + \frac{\pi }{6} + \frac{\pi }{3}t - \frac{\pi }{3}}}{2}} \right).\cos \left( {\frac{{\frac{\pi }{3}t + \frac{\pi }{6} - \frac{\pi }{3}t + \frac{\pi }{3}}}{2}} \right)} \right] = 2\left[2. {\cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right).\cos \frac{\pi }{4}} \right] = 2\sqrt 2 \cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right)\)
Vậy biên độ là \(2\sqrt 2 \), pha ban đầu \( - \frac{\pi }{{12}}\)
a) Chu kỳ của sóng \(T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{\frac{\pi }{{10}}}} = 20\;\left( s \right)\)
b) Vì \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1\;\;\;\;\; \Rightarrow - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90\)
Vậy chiều cao của sóng theo phương thẳng đứng là: \(90 + 90 = 180\;\left( {cm} \right)\)