Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Trước hết ta chứng minh \(\forall x,y,z\ge0\) ta có: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)
Do vai trò \(a,b,c\) như nhau nên giả sử \(a=b=c=kd\)
Khi đó áp dụng \(\left(1\right)\) ta có:
\(\frac{1}{k^2}\left(a^3+b^3+c^3\right)\ge\frac{3abc}{k^2}\)
\(d^3+\frac{a^3}{k^3}+\frac{b^3}{k^3}\ge\frac{3dab}{k^2}\)
\(d^3+\frac{b^3}{k^3}+\frac{c^3}{k^3}\ge\frac{3bdc}{k^2}\)
\(d^3+\frac{c^3}{k^3}+\frac{a^3}{k^3}\ge\frac{3dca}{k^2}\)
\(\Rightarrow3d^3+\left(\frac{2}{k^3}+\frac{1}{k^2}\right)\left(a^3+b^3+c^3\right)\ge\frac{3}{k^2}\left(abc+bcd+cda+dab\right)\)
\(\Rightarrow9d^3+3\left(\frac{2}{k^3}+\frac{1}{k^2}\right)\left(a^3+b^3+c^3\right)\ge\frac{9}{k^2}.\)
Vậy ta tìm \(k\) thỏa mãn \(\Rightarrow3\left(\frac{2}{k^3}+\frac{1}{k^2}\right)=4\Rightarrow4k^3-3k-6=0\)
Đặt \(k=\frac{1}{2}\left(a+\frac{1}{a}\right)^2\) ta có:
\(k=\frac{1}{2}\left(a+\frac{1}{a}\right)^3-\frac{3}{2}\left(a+\frac{1}{a}\right)=6\)
\(\Leftrightarrow x^6-12x^3+1=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt[3]{6+\sqrt{35}}\\x=\sqrt[3]{6-\sqrt{35}}\end{cases}}\)
\(\Rightarrow\left(6-\sqrt{35}\right)\left(6+\sqrt{35}\right)=1\Rightarrow k=\frac{1}{2}\left(\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}\right)\)
Với \(k\) xác định như trên ta tìm được:
\(P_{min}=\frac{9}{k^2}=\frac{36}{\left(\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}\right)^2}\)
bài này mk có cách làm r` mà hơi ngu mà hơi là ko dc làm gì phải dứt khoát chờ mk tìm cách ngu hơn
Ồ sorry bạn nhiều, chỗ đấy bị lỗi kĩ thuật rồi, mình sửa lại nhé :
\(M\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
Lại có : \(\frac{ab+bc+ca}{2}\ge\frac{3\sqrt{a^3b^3c^3}}{2}=\frac{3}{2}\)
Do đó : \(M\ge\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Ta có : \(\frac{1}{a^3\left(b+c\right)}=\frac{\frac{1}{a^2}}{a\left(b+c\right)}=\frac{\left(\frac{1}{a}\right)^2}{a\left(b+c\right)}\)
Tương tự : \(\frac{1}{b^3\left(a+c\right)}=\frac{\left(\frac{1}{b}\right)^2}{b\left(a+c\right)}\) , \(\frac{1}{c^3\left(a+b\right)}=\frac{\left(\frac{1}{c}\right)^2}{c\left(a+b\right)}\)
Ta thấy : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Áp dụng BĐT Svacxo ta có :
\(M=\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^2\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\) \(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Vâỵ \(M_{min}=\frac{3}{2}\) tại \(a=b=c=1\)
Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo.
Áp dụng BĐT AM-GM: \(\frac{a^3}{\left(b+c\right)^2}+\frac{b+c}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)
Suy ra \(\frac{a^3}{\left(b+c\right)^2}\ge\frac{3a-b-c}{4}\)
Tương tự các BĐT còn lại và cộng theo vế ta được \(VT\ge\frac{a+b+c}{4}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b= c = 2
Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))
Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị
Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)
Khi đó \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)
Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)
Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)
Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)
Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)
Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))
Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1
Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x,y,z\right)\)
thi \(P= \Sigma \frac{z^2}{x+y} \geq \frac{x+y+z}{2} \) (1)
Mat khac co \(x+y+z=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\) (2)
Tu (1) va (2) suy ra \(P\ge\frac{3}{2}\).Dau = xay ra khi \(a=b=c=1\)
\(P=\left(5a+\frac{2}{b+c}\right)^2+\left(5b+\frac{2}{c+a}\right)^2+\left(5c+\frac{2}{a+b}\right)^2\)
\(=4\text{∑}\frac{1}{\left(a+b\right)^2}+20\text{ }\text{∑}\left(\frac{a}{b+c}\right)+75\)
\(\ge2\text{∑}\frac{1}{a^2+b^2}+20\cdot\frac{3}{2}+75\)
\(\ge2\cdot\frac{9}{2\left(a^2+b^2+c^2\right)}+105=108\)
Dấu = khi a=b=c=1
Chuyên KHTN 2014
bài này thuộc hàng cân = hệ số khủng
Do vai trò của a, b, c như nhau nên ta có thể dự đoán dấu bằng xảy ra tại \(a=b=c=dk\) với k dương
Áp dụng bất đẳng thức Cauchy cho các bộ ba số dương ta được
\(\frac{1}{k^2}\left(a^3+b^3+c^3\right)\ge\frac{3abc}{k^2}\)(*) ; \(\frac{a^3}{k^3}+\frac{b^3}{k^3}+d^3\ge\frac{3adb}{k^2}\)(**) ; \(\frac{b^3}{k^3}+\frac{c^3}{k^3}+d^3\ge\frac{3bcd}{k^2}\)(***) ;\(\frac{c^3}{k^3}+\frac{a^3}{k^3}+d^3\ge\frac{3cda}{k^2}\)(****)
Cộng theo vế 4 bất đẳng thức (*), (**), (***), (****), ta được: \(\left(\frac{1}{k^2}+\frac{2}{k^3}\right)\left(a^3+b^3+c^3\right)+3d^3\ge\frac{3\left(abc+bcd+cda+dab\right)}{k^2}=\frac{3}{k^2}\)
Hay \(\left(\frac{3}{k^2}+\frac{6}{k^3}\right)\left(a^3+b^3+c^3\right)+9d^3\ge\frac{9}{k^2}\)
Ta cần tìm k để \(\frac{3}{k^2}+\frac{6}{k^3}=4\Leftrightarrow4k^3-3k-6=0\)và ta chọn k là số dương
Đặt \(k=\frac{1}{2}\left(x+\frac{1}{x}\right)^2\)thay vào phương trình trên và biến đổi ta thu được \(x^6-12x^3+1=0\)
Giải phương trình này ta được \(x=\sqrt[3]{6\pm\sqrt{35}}\), để ý \(\left(6+\sqrt{35}\right)\left(6-\sqrt{35}\right)=1\)nên ta tính được \(k=\frac{\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}}{2}\)
Do đó ta tính được giá trị nhỏ nhất của P là \(\frac{36}{\left(\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}\right)^2}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}}{2}d\)