Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2(b+c)2+5bc+b2(a+c)2+5ac≥4a29(b+c)2+4b29(a+c)2=49(a2(1−a)2+b2(1−b)2)(vì a+b+c=1)
a2(1−a)2−9a−24=(2−x)(3x−1)24(1−a)2≥0(vì )<a<1)
⇒a2(1−a)2≥9a−24
tương tự: b2(1−b)2≥9b−24
⇒P⩾49(9a−24+9b−24)−3(a+b)24=(a+b)−94−3(a+b)24.
đặt t=a+b(0<t<1)⇒P≥F(t)=−3t24+t−94(∗)
Xét hàm (∗) được: MinF(t)=F(23)=−19
⇒MinP=MinF(t)=−19.dấu "=" xảy ra khi a=b=c=13
đặt \(\sqrt{\frac{ab}{c}}=x;\sqrt{\frac{bc}{a}}=y;\sqrt{\frac{ca}{b}}=z\Rightarrow xy+yz+zx=1\)
\(P=\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)
\(=\frac{\frac{ab}{c}}{\frac{ab}{c}+1}+\frac{\frac{bc}{a}}{\frac{bc}{a}+1}+\frac{\frac{ca}{b}}{\frac{ca}{b}+1}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}\)
\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}=\frac{3}{4}\left(Q.E.D\right)\)
UCT. Chứng minh \(2a+\frac{1}{a}\ge\frac{a^2+5}{2}\) với \(0< a^2;b^2;c^2< \sqrt{3}\)
Tương tự cộng lại là xong
Theo bất đẳng thức Cauchy, ta có:
\(a+\frac{1}{a}\ge2\)và \(b+\frac{1}{b}\ge2\)và \(c+\frac{1}{c}\ge2\)
\(\Rightarrow P\ge a+b+c+6\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)( thỏa đề bài)
\(\Leftrightarrow minP=1+1+1+6=9\)
1)
\(2x^2-2xy+5y^2-2x-2y+1=0.\)
\(\Leftrightarrow\left(x^2+y^2+1+2xy-2x-2y\right)+\left(x^2-4xy+4y^2\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(2y-x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+y-1=0\\2y-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\2y-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{1}{3}\\x=\frac{2}{3}\end{cases}}}\)
Đặt P=a2+b2+c2+ab+bc+caP=a2+b2+c2+ab+bc+ca
P=12(a+b+c)2+12(a2+b2+c2)P=12(a+b+c)2+12(a2+b2+c2)
P≥12(a+b+c)2+16(a+b+c)2=6P≥12(a+b+c)2+16(a+b+c)2=6
Dấu "=" xảy ra khi a=b=c=1
Ta có: \(\frac{a^2b^2+7}{\left(a+b\right)^2}=\frac{a^2b^2+1+6}{\left(a+b\right)^2}\ge\frac{2ab+2\left(a^2+b^2+c^2\right)}{\left(a+b\right)^2}\)( cô-si )
\(=\frac{\left(a+b\right)^2+a^2+b^2+2c^2}{\left(a+b\right)^2}=1+\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}\)\(\ge1+\frac{a^2+b^2+2c^2}{2\left(a^2+b^2\right)}=1+\frac{1}{2}+\frac{c^2}{a^2+b^2}=\frac{3}{2}+\frac{c^2}{a^2+b^2}\)
CMTT \(\Rightarrow\)\(VT\ge\frac{9}{2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\)
\(P=\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\)
Đặt \(\hept{\begin{cases}b^2+c^2=x>0\\a^2+c^2=y>0\\a^2+b^2=z>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2=\frac{y+z-x}{2}\\b^2=\frac{z+x-y}{2}\\c^2=\frac{x+y-z}{2}\end{cases}}\)
\(\Rightarrow P=\frac{y+z-x}{2x}+\frac{z+x-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{y}{2x}+\frac{z}{2x}-\frac{1}{2}+\frac{z}{2y}+\frac{x}{2y}-\frac{1}{2}+\frac{x}{2z}+\frac{y}{2z}-\frac{1}{2}\)
\(=\left(\frac{y}{2x}+\frac{x}{2y}\right)+\left(\frac{z}{2x}+\frac{x}{2z}\right)+\left(\frac{z}{2y}+\frac{y}{2z}\right)-\frac{3}{2}\)
\(\ge1+1+1-\frac{3}{2}=\frac{3}{2}\)( bđt cô si )
\(\Rightarrow VT\ge\frac{9}{2}+\frac{3}{2}=6\) ( đpcm)
Dấu "=" xảy ra <=> a=b=c=1
ra nguyên những bài khó hiểu hết là chết liền
hoc lop may vay bai kho qua ai ma giai duoc