K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

Ko ai bt thì tôi tự giải. Xem có đúng ko?

Giải: 

Đặt: 

\(\hept{\begin{cases}a=x-1\\b=y-1\end{cases}}\)

Thay thế vào hệ, ta có:

\(\hept{\begin{cases}a+\sqrt{a^2+1}=3^b\\b+\sqrt{b^2+1}=3^a\end{cases}}\)

Vế trừ vế ta có:

\(a+\sqrt{a^2+1}+3^a=b+\sqrt{a^2+1}+3^b\)

Dùng hàm số 

Suy ra: \(a=b\)

19 tháng 10 2017

a=b nha anh k em nha

21 tháng 1 2020

\(a,\hept{\begin{cases}x^2-3y=2\\9y^2-8x=8\end{cases}}\)

\(x^2-3y=2\)

\(y=\frac{1^2-2}{3}\)

\(9-\left(\frac{x^2-2}{3}\right)^2-8x=8\)

\(\Rightarrow x^4-4x^2+4-8x-8=0\)

\(\Rightarrow x^4-4x^2-8x-4=0\)

\(\Rightarrow\left(x^2-2x-2\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\frac{2+2\sqrt{3}}{3}\\y=\frac{2-2\sqrt{3}}{3}\end{cases}}\)

Vậy ................................

21 tháng 1 2020

b, \(x^3+3x^2y-4y^3+x-y=0\)

\(\Leftrightarrow x^3-x^2y+4x^2y-4xy^2+4xy^2-4y^3+x-y=0\)

\(\Leftrightarrow x^2\left(x-y\right)+4xy\left(x-y\right)+4y^2\left(x-y\right)+\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+4xy+4y^2+1\right)=0\)

\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)

Khi đó pt (2) của hệ trở thành: 

\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)

\(\Leftrightarrow\left(x^2+5x+5\right)^2-1=24\)

\(\Leftrightarrow\left(x^2+5x+5\right)^2-5^2=0\)

\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy hệ có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right),\left(-5;-5\right)\right\}\)

31 tháng 10 2018

Ôi trời nhiều thía ? làm từng câu một ha !

\(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)

31 tháng 10 2018

b, ĐKXĐ \(x\ne\pm y\)

Đặt \(\frac{1}{x+y}=a\)  và  \(\frac{1}{x-y}=b\)(a và b khác 0)

Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)

          \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)

       \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)

       \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)

      \(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)

    \(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)

   \(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)

1 tháng 7 2019

a)  ĐK: x, y, z khác 0

\(\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)=\frac{51}{4}\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2=\frac{867}{16}\end{cases}}\)

\(x+\frac{1}{x}=a;y+\frac{1}{y}=b;z+\frac{1}{z}=c\)

Ta có hệ >:

\(\hept{\begin{cases}a+b+c=\frac{867}{4}\\a^2+b^2+c^2=\frac{867}{16}\end{cases}}\)

Ta có: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{867}{16}\) với mọi a, b,c

"="   xảy ra khi và chỉ khi a=b=c

Hay \(x+\frac{1}{x}=y+\frac{1}{y}=z+\frac{1}{z}=\frac{17}{4}\)  giải ra tìm x, y, z

b) Hệ đối xứng:

\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)

Đặt x+y=S, xy=P

Ta có hệ :

\(\hept{\begin{cases}S+P=2+3\sqrt{2}\\S^2-2P=6\end{cases}}\)

=> \(\hept{\begin{cases}P=2+3\sqrt{2}-S\\S^2-2\left(2+3\sqrt{2}-S\right)=6\end{cases}}\)

Tự giải tìm S, P 

=> x,y

11 tháng 11 2017

Do x^2,y^2,z^2≥0 nên x+1≥0;y+1≥0;z+1≥0⇒x,y,z≥−1

★ Nếu x≥0 thì z^2=x+1≥1⇒z>0⇒y^2=z+1>1⇒y>0

Không mất tính tổng quát giả sử  x≥y≥z>0⇒x^2≥y^2≥z^2>0⇒y≥z≥x⇒x=y=z và x^2=x+1⇒x=y=z=(1+√5)/2

★ Nếu −1≤x≤0 thì y+1=x^2<1⇒y≤0⇒z+1=y2<1⇒z<0

Không mất tính tổng quát giả sử −1≤x≤y≤z≤0⇒x2≥y2≥z2>0⇒y≥z≥x suy ra x=y=z=(1−√5)/2

Vậy hệ có 2 nghiệm x=y=z=(1±√5)/2 

11 tháng 11 2017

Em còn cách khác. Anh xem có đúng ko?

Điều kiện: \(x,y,z\ge-1\)

Xét các trường hợp, dùng phương pháp đánh giá, CM được:

 \(x=y=z\)

Thế vào tìm được nghiệm:

\(x=y=z=\frac{1\pm\sqrt{5}}{x}\)

2 tháng 11 2016

\(\hept{\begin{cases}x+\sqrt{x^2+1}=y+\sqrt{y^2-1}\left(1\right)\\x^2+y^2-xy=1\left(2\right)\end{cases}}\) \(DK:y^2\ge1\) 

Đặt: \(x^2+\sqrt{x^2+1}=y^2+\sqrt{y^2-1}=t\) . Vì: \(\sqrt{x^2+1}>\sqrt{x^2}=\left|x\right|\ge-x\Rightarrow t=\sqrt{x^2+1}+x>0\)  

\(\Leftrightarrow\hept{\begin{cases}x-t=\sqrt{x^2+1}\\y-t=\sqrt{y^2-1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-2xt+t^2=x^2+1\\y^2-2yt+t^2=y^2-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{t^2-1}{2t}\\y=\frac{t^2+1}{2t}\end{cases}}\) 

\(\left(2\right)\Rightarrow\left(\frac{t^2-1}{2t}\right)^2+\left(\frac{t^2+1}{2t}\right)^2-\left(\frac{t^2-1}{2t}\right)\left(\frac{t^2+1}{2t}\right)=1\) 

\(\Leftrightarrow\frac{t^4-2t^2+1+t^4+2t^2+1-t^4+1}{4t^2}=1\) 

\(\Leftrightarrow t^4+3=4t^2\Leftrightarrow t^4-4t^2+3=0\Leftrightarrow\orbr{\begin{cases}t^2=1\\t^2=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=1\\t=\sqrt{3}\end{cases}}\) 

Với \(t=1\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\left(TM\right)\)

Với \(t=\sqrt{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{\sqrt{3}}\\y=\frac{2}{\sqrt{3}}\end{cases}}\left(TM\right)\) 

Vậy:....

2 tháng 11 2016

Xét pt (1) ta có

PT (1) <=> x - y = \(\sqrt{y^2-1}-\sqrt{x^2+1}\)

<=> xy = \(1\sqrt{\left(x^2+1\right)\left(y^2-1\right)}\)

<=> y2 - x2 = 1

Thế vào pt (2) ta được

y2 + x2 - xy = y2 - x2

<=> x(2x - y) = 0

Tới đây thì đơn giản rồi