Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Căn bậc hai của một số thực dương a là một số thực b sao cho b 2 = a.
biến đổi về dạng 2 mũ 1/2 và 3 mũ 1/3 đi p.xong tách 3 mũ 1/3 thành 3^1/2 nhân 3^-1/6.so sánh 2^1/2 nhỏ hơn 3^1/2 do 2<3 nên 3^1/2 nhân 3^-1/6 sẽ lớn hơn 2^1/2.t giai v k pieets đúng k nua.sai thfi p thông cảm nhé
Cứ tăng giá thêm 100.000 ngàn đồng/tháng thì có 2 căn bỏ trống
--> Tăng thêm 100.000*n ngàn đồng/tháng thì sẽ có 2n căn bị bỏ trống
Gọi x = 2*10^{6} + 10^{5}*n là giá cho thuê để được thu nhập cao nhất
Suy ra thu nhập là y = x*(50 - 2n) (vì trong 50 căn đã có 2n căn bị bỏ trống)
y = x(50 - 2n) = (2*10^{6} + 10^{5}*n) (50 - 2n) = -2*10^{5}*n^{2} + 10^{6}*n + 10^{8}
= -2*10^{5} (n^{2} - 5n - 500) = -2*10^{5} [(n - 5/2)^{2} - 506,25] = -2*10^{5}(n - 5/2)^{2} + 1.0125 * 10^{8}
Thấy y đạt giá trị lớn nhất bằng 1.0125*10^{8} khi n = 2,5
Vậy giá thuê để đạt thu nhập lớn nhất là x = 2.000.000 + 100.000*2,5 = 2.250.000 đồng/tháng
1) bạn dùng dấu U
điều kiện \(\begin{cases}m\ne0,m>-\frac{1}{4}\\m< 1\end{cases}\)
muons dễ nhìn thì vẽ trục số: 0 -1/4 1 x
=> điều kiện x \(\in\left(-\frac{1}{4};1\right)\backslash\left\{0\right\}\)
Đề thế này hả bạn?
\(A=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}dx\) (1)
Đặt \(\frac{\pi}{2}-x=t\Rightarrow dx=-dt;\left\{{}\begin{matrix}x=0\Rightarrow t=\frac{\pi}{2}\\x=\frac{\pi}{2}\Rightarrow t=0\end{matrix}\right.\)
\(A=\int\limits^0_{\frac{\pi}{2}}\frac{\sqrt{cost}}{\sqrt{cost}+\sqrt{sint}}\left(-dt\right)=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{cost}}{\sqrt{sint}+\sqrt{cost}}dt=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}dx\) (2)
Cộng vế với vế của (1) và (2):
\(2A=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}dx+\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}dx=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{sinx}+\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}dx=\int\limits^{\frac{\pi}{2}}_0dx=\frac{\pi}{2}\)
\(\Rightarrow A=\frac{\pi}{4}\)
b/ \(B=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{cosx}}{\sqrt{cosx}+\sqrt{sinx}}dx\)
Từ (2) ta thấy \(B=A=\frac{\pi}{4}\)