Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{7x+4}{\sqrt{2\left(x-1\right)\left(x+1\right)}}+\frac{2\sqrt{2x+1}}{\sqrt{2\left(x+1\right)}}=3+\frac{3\sqrt{2x+1}}{\sqrt{x-1}}\)
\(\Leftrightarrow7x+4+2\sqrt{\left(2x+1\right)\left(x-1\right)}=3\sqrt{2\left(x-1\right)\left(x+1\right)}+3\sqrt{2\left(2x+1\right)\left(x+1\right)}\)
\(\Leftrightarrow\left(7x+4+\sqrt{8x^2-4x-4}\right)^2=\left(\sqrt{18x^2-18}+\sqrt{36^2+54x+18}\right)^2\)
\(\Leftrightarrow\left(7x+4\right)^2+8x^2-4x-4+2\left(7x+4\right)\sqrt{8x^2-4x-4}\)\(=18x^2-18+36x^2+54x+18+2\sqrt{\left(18x^2-18\right)\left(36x^2+54x+18\right)}\)
\(\Leftrightarrow3x^2-2x+12+4\left(7x+4\right)\sqrt{\left(x-1\right)\left(2x+1\right)}=36\left(x+1\right)\sqrt{\left(x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow3x^2-2x+12=4\left(2x+5\right)\sqrt{\left(x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow\left(3x^2-2x+12\right)^2=16\left(2x+5\right)^2\left(x-1\right)\left(2x+1\right)\)
\(\Leftrightarrow119x^4+588x^3+1940x^2-672x-544=0\left(1\right)\)
Ta thấy x>1 => Vế trái (1) \(>119.1^4+588.1^3+1940.1^2-672.1-544=1431>0\)
=> pt vô nghiệm.
Điều kiện : \(\begin{cases}x\ge\frac{1}{3}\\3x\in N\end{cases}\)
Từ phương trình ban đầu \(\Leftrightarrow\sqrt{2^x.2^{2.\frac{x}{3}}.\left(\frac{1}{8}\right)^{\frac{1}{3x}}}=2^2.2^{\frac{1}{3}}\)
\(\Leftrightarrow2^{\frac{x}{2}}.2^{\frac{x}{3}}.2^{\frac{-1}{2x}}=2^{\frac{7}{3}}\)
\(\Leftrightarrow2^{\frac{x}{2}+\frac{x}{3}-\frac{1}{2x}}=2^{\frac{7}{3}}\)
\(\Leftrightarrow\frac{x}{2}+\frac{x}{3}-\frac{1}{2x}=\frac{7}{3}\)
\(\Leftrightarrow5x^2-14x-3=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=-\frac{1}{5}\end{array}\right.\)
Kết hợp với điều kiện ta có \(x=3\) là nghiệm của phương trình
a)
Pt\(\Leftrightarrow\left\{{}\begin{matrix}3x-4=\left(x-3\right)^2\\x-3\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-4=x^2-6x+9\\x\ge3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-9x+13=0\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{9+\sqrt{29}}{2}\\x_2=\dfrac{9-\sqrt{29}}{2}\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{9+\sqrt{29}}{2}\)
Vậy \(x=\dfrac{9+\sqrt{29}}{2}\) là nghiệm của phương trình.
b) Pt \(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+3=\left(2x-1\right)^2\\2x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x^2-2x-2=0\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{7}}{3}\\x_2=\dfrac{1-\sqrt{7}}{3}\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{1+\sqrt{7}}{3}\)
Vậy phương trình có duy nhất nghiệm là: \(x=\dfrac{1+\sqrt{7}}{3}\)
đk: \(\hept{\begin{cases}x^2-2x+5\ge0\\4x+5\ge0\end{cases}}\Leftrightarrow x\ge\frac{-5}{4}\)
Ta có: \(x^3-2x^2-\sqrt{x^2-2x+5}=2\sqrt{4x+5}-5x-4\)
\(\Leftrightarrow3x^3-6x^2+15x+12-3\sqrt{x^2-2x+5}-6\sqrt{4x+5}=0\)
\(\Leftrightarrow3\left(x+1-\sqrt{x^2-2x+5}\right)+2\sqrt{4x+5}\left(\sqrt{4x+5}-3\right)+3x^3-6x^2+4x-1=0\)
\(\Leftrightarrow\frac{12\left(x-1\right)}{x+1+\sqrt{x^2-2x+5}}+\frac{8\left(x-1\right)\sqrt{4x+5}}{\sqrt{4x+5}+3}+\left(x-1\right)\left(3x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{12}{x+1+\sqrt{x^2-2x+5}}+\frac{8\sqrt{4x+5}}{\sqrt{4x+5}+3}+3x^2-3x+1\right)=0\Leftrightarrow x=1\)
Bất phương trình : \(\Leftrightarrow2^{\frac{x+1}{2}}.2^{\frac{4x-2}{3}}.2^{9-3x}>2^{\frac{3}{2}}.2^{-3}\)
\(\Leftrightarrow2^{\frac{x+1}{2}+\frac{4x-2}{3}+9-3x}>2^{\frac{3}{2}-3}\)
\(\Leftrightarrow x< \frac{62}{7}\)
Vậy bất phương trình có tập nghiệm là \(S=\left(-\infty;\frac{62}{7}\right)\)
a/ \(x\le8\)
\(\Leftrightarrow x^2+x+12=\left(8-x\right)^2\)
\(\Leftrightarrow x^2+x+12=x^2-16x+64\)
\(\Leftrightarrow17x=52\Rightarrow x=\frac{52}{17}\)
b/ \(x\le4\)
\(\Leftrightarrow x^2+3x-1=\left(4-x\right)^2\)
\(\Leftrightarrow x^2+3x-1=x^2-8x+16\)
\(\Leftrightarrow11x=17\Rightarrow x=\frac{17}{11}\)
c/ \(\left\{{}\begin{matrix}x^2-3x\ge0\\2x-1\ge0\end{matrix}\right.\) \(\Rightarrow x\ge3\)
\(x^2-3x=2x-1\)
\(\Leftrightarrow x^2-5x+1=0\Rightarrow\left[{}\begin{matrix}x=\frac{5+\sqrt{21}}{2}\\x=\frac{5-\sqrt{21}}{2}\left(l\right)\end{matrix}\right.\)
d/ \(2-x\ge0\Rightarrow x\le2\)
\(x^2+2x+4=2-x\)
\(\Leftrightarrow x^2+3x+2=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
e/ \(2x^2-x\ge0\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge\frac{1}{2}\end{matrix}\right.\)
\(x^2+2x+4=2x^2-x\)
\(\Leftrightarrow x^2-3x-4=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
f/ \(x\ge2\)
\(2x-1=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-6x+5=0\Rightarrow\left[{}\begin{matrix}x=1\left(l\right)\\x=5\end{matrix}\right.\)
a. ĐKXĐ: \(x\le\frac{-2-\sqrt{2}}{2};x\ge\frac{-2+\sqrt{2}}{2}\)
\(pt\Leftrightarrow2\sqrt{2x^2+4x+1}=2-2x^2-4x\)
\(\Leftrightarrow2x^2+4x+1+2\sqrt{2x^2+4x+1}+1=0\)
\(\Leftrightarrow\left(\sqrt{2x^2+4x+1}+1\right)^2=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+1}+1=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+1}=-1\)
\(\Rightarrow\text{pt vô nghiệm}\)
b. ĐKXĐ: \(x\le-4;x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t>0\right)\)
\(\Leftrightarrow t^2=2x+2\sqrt{x^2-16}\)
pt đã cho tương đương:
\(t=t^2\)
\(\Leftrightarrow t=1\) \(\left(\text{Vì }t>0\right)\)
\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=1\)
\(\Leftrightarrow2x+2\sqrt{x^2-16}=1\)
\(\Leftrightarrow2\sqrt{x^2-16}=1-2x\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(x^2-16\right)=\left(1-2x\right)^2\\1-2x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{65}{4}\\x\le\frac{1}{2}\end{matrix}\right.\Rightarrow\text{vô nghiệm}\)