K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 12 2021

\(tanx=tan20^0\)

\(\Rightarrow x=20^0+k180^0\) (\(k\in Z\))

19 tháng 6 2019

√3tan⁡x + 1 = 0 ⇔ tan⁡x = (-√3)/3 ⇔ x = (-π)/6 + kπ, k ∈ Z)

DT
13 tháng 12 2023

1+tan^2 x = 1/cos^2 x

=> 1+ t^2 = 1/cos^2 x

=> 3 + 3t^2 = 3/cos^2 x

PT TRỞ THÀNH :

3 + 3t^2 - 2t + 1 = 0

<=> 3t^2 - 2t + 4 = 0

 

30 tháng 5 2017

1 tháng 2 2017

Đáp án B

Vậy PT có 1 nghiệm thuộc (0; π )

5 tháng 7 2017

Đáp án B

DD
7 tháng 7 2021

ĐK: \(cosx\ne0\Leftrightarrow x\ne\frac{\pi}{2}+k\pi,k\inℤ\).

\(1+tanx=2\left(sinx+cosx\right)\)

\(\Leftrightarrow cosx+sinx=2cosx\left(sinx+cosx\right)\)

\(\Leftrightarrow\orbr{\begin{cases}sinx+cosx=0\\cosx=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}cosx=cos\left(-x-\frac{\pi}{2}\right)\\cosx=cos\frac{\pi}{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm\left(-x-\frac{\pi}{2}\right)+k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{cases}},\left(k\inℤ\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-\pi}{4}+k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{cases}},\left(k\inℤ\right)\)(thỏa mãn) 

6 tháng 7 2021

\(1+\tan x=2\left(\sin x+\cos x\right)\)

Bạn áp dụng đẳng thức lượng giác nhé : 

 \(\frac{\sin x+\cos x}{\cos x}=2\sin x+2\cos x\)

Biệt thức : 

\(D=b^2-4ac\)

\(\Leftrightarrow\left(-1\right)^2-4\left(1.1\right)=-3\)

Phương trình không có nghiệm thực : 

\(D< 0\)

Nghiệm tuần hoàn : 

\(2\pi k-\frac{\pi}{4}\)

\(2\pi k+\frac{3\pi}{4}\)

\(2\pi k+\frac{\pi}{3}\)

\(2\pi k-\frac{\pi}{3}\)

              Ps : không hiểu chỗ nào thì bạn hỏi mình nhé, nhớ k :33

                                                                                                                                              # Aeri # 

3 tháng 10 2021

\(sinx=\dfrac{2tan\dfrac{x}{2}}{tan^2\dfrac{x}{2}+1}\)

\(cosx=\dfrac{1-tan^2\dfrac{x}{2}}{1+tan^2\dfrac{x}{2}}\)

Đặt \(t=tan\dfrac{x}{2}\)

Khi đó pt: \(\Rightarrow a\cdot\dfrac{2t}{t^2+1}+b\cdot\dfrac{1-t^2}{1+t^2}=c\)

                \(\Rightarrow2t\cdot a+\left(1-t^2\right)\cdot b=\left(1+t^2\right)\cdot c\)

21 tháng 6 2021

ĐK: \(x\ne\dfrac{\pi}{6}+\dfrac{k\pi}{3}\)

\(tan3x=tanx\)

\(\Leftrightarrow3x=x+k\pi\)

\(\Leftrightarrow x=\dfrac{k\pi}{2}\)

Đối chiếu điều kiện ta được \(x=k\pi\) là nghiệm của phương trình.