Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(1)=1+a+b+c=1
a+b+c=0
f(2)=8+4a+2b+c=4
4a+2b+c=-4
4a+2b+c-(a+b+c)=-4
3a+b=-4
3(3a+b)=-12
9a+3b=-12
f(3)=27+9a+3b+c=9
9a+3b+c=-18
-12+c=-18
c=-6
ta lại có 4a+2b+c-4(a+b+c)=-4-4.0=-4
-2b-3c=-4
-2b+18=-4
-2b=-22
b=11
a+b+c=0
a+11-6=0
a+5=0
a=-5
f(x)=x^3-5x^2+11x-6
đến đây bạn tự giải f(6),f(7),f(8) nhan
\(1+a+b+c=1\)(1)
\(8+4a+2b+c=4\)(2)
\(27+9a+3b+c=9\)(3)
a+b+c=0
4a+2b+c=-4
9a+3b+c=-18
---
3a+b=-4
8a+2b=-18
=>2a=-10=> a=5; b=-19;c=14
f(x)=x^2+5x^2-19x+14
f(6)=6^3+5.6^2-19.6+14=
.....
F(-2)=0=> -8a+4b+c=0 (1)
f(1)=6=> a+b+c=6 (2)
f(-1)=4=> -a+b+c=4 (3)
(2) trừ (3)=> 2a=2=> a=1; thay vào (3)=> c=5-b thay vào (1)
-8+4b+5-b=0=> b=1
\(\left\{{}\begin{matrix}a=-1\\b=1\\c=4\\f\left(x\right)=-x^3+x^2+4\end{matrix}\right.\)
Đa thức \(g\left(x\right)=x^2+x-6\)có nghiệm \(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Để đa thức f(x) = x3+ax2-bx+12 chia hết cho g(x) = x2+x-6 thì 3 và -2 cũng là hai nghiệm của đa thức x3+ax2-bx+12
Nếu x = 3 thì \(f\left(3\right)=27+9a-3b+12=0\)
\(\Leftrightarrow9a-3b=-39\Leftrightarrow3a-b=-13\)(1)
Nếu x = -2 thì \(f\left(-2\right)=-8+4a+2b+12=0\)
\(\Leftrightarrow4a+2b=-4\Leftrightarrow2a+b=-2\)(2)
Lấy (1) + (2), ta được: \(5a=-15\Leftrightarrow a=-3\)
\(\Rightarrow b=-2+3.2=4\)
Vậy a= -3; b = 4
x^2+1 x^3+ax^2+bx-2 x+a x^3 +x ax^2+(b-1)x-2 ax^2 +a (b-1)x -(a+2)
Để f(x) = x3+ax2+bx-2 chia hết cho g(x) =x2+1 thì \(\left(b-1\right)x-\left(a+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}b-1=0\\a+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=-2\end{cases}}\)
Xét hàm \(g\left(x\right)=f\left(x\right)-10x\)
\(\Rightarrow g\left(1\right)=f\left(1\right)-10.1=10-10=0\)
Tương tự \(g\left(2\right)=0\) ; \(g\left(3\right)=0\)
\(\Rightarrow g\left(x\right)\) luôn có 3 nghiệm \(x=\left\{1;2;3\right\}\)
\(\Rightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)\) với a là số thực bất kì
\(\Rightarrow f\left(x\right)=g\left(x\right)+10x=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)+10x\)
\(\Rightarrow f\left(12\right)=990\left(12-a\right)+120=12000-990a\)
\(f\left(-8\right)=-990\left(-8-a\right)-80=7840+990a\)
\(\Rightarrow\frac{f\left(12\right)+f\left(-8\right)}{10}+15=\frac{12000-990a+7840+990a}{10}+15=1999\)