K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

Ta có A = \(4\sqrt{x}+3\sqrt{1-x}\)\(\le1\sqrt{\left(4^2+3^2\right)\left(x+1-x\right)}=5\)

Bên cạnh đó \(0\le x\le1\)

=> A\(\ge3\)

Vậy GTNN là A = 3 khi x = 0, GTLN là A = 5 khi x = \(\frac{16}{25}\)

4 tháng 9 2017

Đặt \(\sqrt{x-4}=t\left(t\ge0\right)\Rightarrow x=t^2+4\)Khi đó \(A=\frac{t}{2t^2+8}\Rightarrow2At^2-t+8A=0\)

\(\Delta=1-64A^2\). Pt có nghiêm<=> \(\Delta\ge0\)\(\Leftrightarrow\)\(1-64A^2\ge0\)\(\Leftrightarrow\)\(A^2\le\frac{1}{64}\)\(\Leftrightarrow\)\(-\frac{1}{8}\le A\le\frac{1}{8}\)

Do đó \(MinA=\frac{-1}{8}\)khi \(t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(-\frac{1}{8}\right)^2}}{4.\left(-\frac{1}{8}\right)}=-2\)(loại)

          \(MaxA=\frac{1}{8}khi\\ t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(\frac{1}{8}\right)^2}}{4.\frac{1}{8}}=2\)(thỏa)

\(\Rightarrow\sqrt{x-4}=2\Rightarrow x=8\)

Vậy MaxA=1/8 khi x=8

4 tháng 9 2017

min trước nhé max mình đang nghĩ 

ta có 

ĐKXĐ \(x>=4\)

vì x>=4 => 2x>0 và \(\sqrt{x-4}>=0\)

=> \(\frac{\sqrt{x-4}}{2x}>=0\)

dấu = xảy ra <=> x=4

9 tháng 8 2016

\(a.\) 

\(\text{*)}\) Áp dụng bđt  \(AM-GM\)  cho hai số thực dương  \(x,y,\)  ta có:

\(x+y\ge2\sqrt{xy}=2\)  (do  \(xy=1\)  )

\(\Rightarrow\)  \(3\left(x+y\right)\ge6\)

nên  \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)

\(\Rightarrow\)  \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)

\(\text{*)}\)  Tiếp tục áp dụng bđt  \(AM-GM\)  cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\)  ta có:

\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)

Do đó,  \(D\ge6+5=11\)

Dấu  \("="\)  xảy ra khi  \(x=y=1\)

Vậy,  \(D_{min}=11\)  \(\Leftrightarrow\)  \(x=y=1\)

\(b.\) Bạn tìm điểm rơi rồi báo lại đây

9 tháng 8 2016

b

\(8\sqrt{x-1}=4.2.\sqrt{x-1}.1\le4.\left(x-1+1\right)=4x\)

\(x.\sqrt{16-3x^2}\le\frac{x^2+16-3x^2}{2}=8-x^2\)

\(\Rightarrow y\le4x-x^2+8=-\left(x-2\right)^2+12\le12\)

Dấu bằng xảy ra khi \(x=2\)

15 tháng 9 2017

ta có ĐK là x>=0

ta có \(4\sqrt{x}\ge0;x+2\sqrt{x}+1>0\Rightarrow\) \(\frac{4\sqrt{x}}{x+2\sqrt{x}+1}\ge0\)

dấu = xảy ra <=> x= 0,

22 tháng 11 2017

Đặt: 

\(\frac{3-4x}{x^2+1}=a\Rightarrow ax^2+4x+a-3=0\) Phương trình bậc hai ẩn x có nghiệm

\(\Delta'=a^2-3a-4\le0\Leftrightarrow-1\le a\le4\)

\(GTNN:-1\)

\(GTLN:4\)