K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1

a) x² - 4 = 0

x² = 4

x = 2 hoặc x = -2

b) 2x(x + 5) - 3(5 + x) = 0

(x + 5)(2x - 3) = 0

X + 5 = 0 hoặc 2x - 3 = 0

*) x + 5 = 0

x = -5

*) 2x - 3 = 0

2x = 3

x = 3/2

c) x³ - 6x² + 11x - 6 = 0

x³ - x² - 5x² + 5x + 6x - 6 = 0

(x³ - x²) - (5x² - 5x) + (6x - 6) = 0

x²(x - 1) - 5x(x - 1) + 6(x - 1) = 0

(x - 1)(x² - 5x + 6) = 0

(x - 1)(x² - 2x - 3x + 6) = 0

(x - 1)[(x² - 2x) - (3x - 6)] = 0

(x - 1)[x(x - 2) - 3(x - 2)] = 0

(x - 1)(x - 2)(x - 3) = 0

x - 1 = 0 hoặc x - 2 = 0 hoặc x - 3 = 0

*) x - 1 = 0

x = 1

*) x - 2 = 0

x = 2

*) x - 3 = 0

x = 3

Vậy x = 1; x = 2; x = 3

a: =>x^3+2x^2-8x^2-16x+15x+30=0

=>(x+2)(x^2-8x+15)=0

=>(x+2)(x-3)(x-5)=0

=>\(x\in\left\{-2;3;5\right\}\)

b: =x^2-12x+36-3

=(x-6)^2-3>=-3

Dấu = xảy ra khi x=6

AH
Akai Haruma
Giáo viên
21 tháng 8

Lời giải:

$M=\frac{8x+12}{x^2+4}$

$\Rightarrow M(x^2+4)=8x+12$
$\Rightarrow Mx^2-8x+(4M-12)=0(*)$

Vì $M$ tồn tại nên dấu "=" của PT luôn xảy ra, tức là PT $(*)$ luôn có nghiệm.

$\Rightarrow \Delta'=16-M(4M-12)\geq 0$

$\Leftrightarrow 4-M(M-3)\geq 0$

$\Leftrightarrow M^2+3M-4\leq 0$

$\Leftrightarrow (M-1)(M+4)\leq 0$
$\Leftrightarrow -4\leq M\leq 1$

Vậy $M_{\min}=-4; M_{\max}=1$

26 tháng 12 2021

b: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)

18 tháng 9 2019

Câu 1: Tự làm :D

Câu 2: \(A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)

Đẳng thức xảy ra khi x = y = 2

Vậy...

Câu 3:

a) Trùng với câu 2

b) ĐK:x khác -1

\(B=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\frac{3}{x^2+1}\le\frac{3}{0+1}=3\)

Đẳng thức xảy ra khi x = 0

18 tháng 9 2019

Làm nốt cái câu 1 và đầy đủ cái câu 2:v

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

Làm nốt nha.Lười quá:((

2

\(A=x^2-2xy+2y^2-4y+5\)

\(A=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)

\(A=\left(x-y\right)^2+\left(y-2\right)^2+1\)

\(A\ge1\)

Dấu "=" xảy ra tại \(x=y=2\)