\(P=\frac{5\sqrt{x}+9}{\sqrt{x}+2}tìmgiátrịnhỏnhấtcủaP\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019

\(\frac{5\sqrt{x}+9}{\sqrt{x}+2}=\frac{5\left(\sqrt{x}+2\right)-1}{\sqrt{x}+2}=5-\frac{1}{\sqrt{x}+1}\)

Ta có: \(\sqrt{x}\ge0\)

\(\Leftrightarrow\sqrt{x}+2\ge2\)

\(\Leftrightarrow\frac{1}{\sqrt{x}+2}\le\frac{1}{2}\)

\(\Leftrightarrow-\frac{1}{\sqrt{x}+2}\ge-\frac{1}{2}\)

\(\Leftrightarrow5-\frac{1}{\sqrt{x}+2}\ge\frac{9}{2}\)

Vậy \(P_{min}=\frac{9}{2}\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

29 tháng 10 2020

Trả lời nhanh giúp mình với mình cần gấp lắm

AH
Akai Haruma
Giáo viên
28 tháng 6 2019

Lời giải:

a) ĐK: \(x>0; x\neq 25; x\neq 36\)

PT \(\Rightarrow (\sqrt{x}-2)(\sqrt{x}-6)=(\sqrt{x}-5)(\sqrt{x}-4)\)

\(\Leftrightarrow x-8\sqrt{x}+12=x-9\sqrt{x}+20\)

\(\Leftrightarrow \sqrt{x}=8\Rightarrow x=64\) (thỏa mãn)

Vậy.......

b)

ĐK: \(x\geq \frac{-1}{2}\)

PT \(\Leftrightarrow \sqrt{9(2x+1)}-\sqrt{4(2x+1)}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow 3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow \frac{4}{3}\sqrt{2x+1}=4\Leftrightarrow \sqrt{2x+1}=3\)

\(\Rightarrow x=\frac{3^2-1}{2}=4\) (thỏa mãn)

c)

ĐK: \(x\geq 2\)

PT \(\Leftrightarrow \sqrt{4(x-2)}-\frac{1}{2}\sqrt{x-2}+\sqrt{9(x-2)}=9\)

\(\Leftrightarrow 2\sqrt{x-2}-\frac{1}{2}\sqrt{x-2}+3\sqrt{x-2}=9\)

\(\Leftrightarrow \frac{9}{2}\sqrt{x-2}=9\Leftrightarrow \sqrt{x-2}=2\Rightarrow x=2^2+2=6\) (thỏa mãn)