\(P=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}+\frac{1}{\sqrt{a}+2}-1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 10 2019

ĐKXĐ: ...

\(P=\frac{3a+3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}-\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}+\frac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}-\frac{a+\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{3a+3\sqrt{a}-3-a+4+\sqrt{a}-1-a-\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)

\(\left|P\right|=1\Rightarrow\left[{}\begin{matrix}P=1\\P=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{\sqrt{a}+1}{\sqrt{a}-1}=1\\\frac{\sqrt{a}+1}{\sqrt{a}-1}=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}+1=\sqrt{a}-1\left(vn\right)\\\sqrt{a}+1=-\sqrt{a}+1\end{matrix}\right.\) \(\Rightarrow a=0\)

\(P=\frac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)

\(P\in N\Rightarrow\sqrt{a}-1=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)

\(\Rightarrow\sqrt{a}=\left\{-1\left(l\right);0;2;3\right\}\)

\(\Rightarrow a=\left\{0;4;9\right\}\)

Thay vào P chỉ thấy \(a=\left\{4;9\right\}\) thỏa mãn

10 tháng 8 2017

ĐK \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)

a. Ta có \(P=\frac{3a+3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}-\frac{\sqrt{a}-2}{\sqrt{a}-1}+\frac{1}{\sqrt{a}+2}-1\)

\(=\frac{3a+3\sqrt{a}-3-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)+\sqrt{a}-1-a-\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{3a+3\sqrt{a}-3-a+4+\sqrt{a}-1-a-\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\)

b. Để \(\left|P\right|=2\Rightarrow\orbr{\begin{cases}P=2\\P=-2\end{cases}}\)

Với \(P=2\Rightarrow\sqrt{a}+1=2\sqrt{a}-2\Rightarrow\sqrt{a}=3\Rightarrow a=9\)

Với \(P=-2\Rightarrow\sqrt{a}+1=2-2\sqrt{a}\Rightarrow\sqrt{a}=\frac{1}{3}\Rightarrow a=\frac{1}{9}\)

c. Ta có \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)

Để \(P\in N\Rightarrow P\in Z\Rightarrow\sqrt{a}-1\in\left\{-2;-1;1;2\right\}\)

\(\sqrt{a}-1\)\(-2\)\(-1\)\(1\)\(2\)
\(\sqrt{a}\)\(-1\)\(0\)\(2\)\(3\)
\(a\) \(0\)\(4\)\(9\)
 \(\left(l\right)\)\(\left(tm\right)\)\(\left(tm\right)\)

\(\left(tm\right)\)

Vậy \(x\in\left\{0;4;9\right\}\)thì \(P\in N\)

17 tháng 8 2017

http://lingcor.net/ref/52937

31 tháng 10 2020

a)ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có: \(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\frac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{15\sqrt{x}-11-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

Ta có: \(A-\frac{2}{3}=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}-\frac{2}{3}\)

\(=\frac{3\left(-5\sqrt{x}+2\right)}{3\left(\sqrt{x}+3\right)}-\frac{2\left(\sqrt{x}+3\right)}{3\left(\sqrt{x}+3\right)}\)

\(=\frac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)

\(=\frac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\)

\(=\frac{-17\sqrt{x}-51+51}{3\left(\sqrt{x}+3\right)}\)

\(=\frac{-17}{3}+\frac{17}{\sqrt{x}+3}\)

Ta có: \(\sqrt{x}+3\ge3\forall x\) thỏa mãn ĐKXĐ

\(\Rightarrow\frac{17}{\sqrt{x}+3}\le\frac{17}{3}\forall x\) thỏa mãn ĐKXĐ

\(\Rightarrow\frac{17}{\sqrt{x}+3}-\frac{17}{3}\le\frac{17}{3}-\frac{17}{3}=0\forall x\) thỏa mãn ĐKXĐ

\(\Rightarrow A-\frac{2}{3}\le0\forall x\) thỏa mãn ĐKXĐ

nên \(A\le\frac{2}{3}\)(đpcm)

c) Ta có: \(C=\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{a-2\sqrt{ab}+b}{a-b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{\sqrt{a}-\sqrt{b}+2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}=1\)

Vậy: Giá trị của C không phụ thuộc vào a,b(đpcm)