Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên
\(\Rightarrow\)12\(⋮\)3n-1
\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!
b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên
\(\Rightarrow\)2n+3\(⋮\)7
\(\Rightarrow\)2n+3=7k
\(\Rightarrow n=\frac{7k-3}{2}\)
b.
\(A=\frac{5}{n-3}\)
Để A nguyên=> \(\frac{5}{n-3}\)nguyên=> 5\(⋮n-3\)=> n-3 thuộc Ư(5)={+-5}
Ta có bảng sau:
n-3 -5 -1 1 5
n -2 2 4 8
Điều kiện xác định : \(n\ne3\)
a, Để biểu thức A là phân số \(\Rightarrow n-3\neƯ\left(5\right)\)
\(\Leftrightarrow n-3\ne\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow n\ne\left\{\pm2;4;8\right\}\)
Vậy để biểu thức A là phân số \(\Leftrightarrow n\ne\left\{\pm2;4;8\right\}\)
b, Để biểu thức A là số nguyên \(\Rightarrow5⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow n\in\left\{\pm2;4;8\right\}\)
Vậy \(\Leftrightarrow n\in\left\{\pm2;4;8\right\}\)biểu thức A là số nguyên
\(\frac{2n-1}{n+8}-\frac{n-14}{n+8}=\frac{2n-1-\left(n-14\right)}{n+8}=\frac{n+13}{n+8}\)
\(=\frac{n+8+5}{n+8}=1+\frac{5}{n+8}\inℤ\Leftrightarrow\frac{5}{n+8}\inℤ\)
mà \(n\inℤ\)nên \(n+8\)là ước của \(5\)suy ra \(n+8\in\left\{-5,-1,1,5\right\}\Leftrightarrow n\in\left\{-13,-9,-7,-3\right\}\).
\(\frac{2n-1}{n+8}-\frac{n-14}{n+8}=\frac{n+13}{n+8}=\frac{n+8+5}{n+8}=1+\frac{5}{n+8}.\)
Để biểu thức là số nguyên thì n+8 là ước của 5
\(\Rightarrow n+8=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{-13;-9;-7;-3\right\}\)
B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)
=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)
<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng:
2n + 3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -10 |
Vậy ....
Bài 2:
Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)
=> 42n-7-42n+6 chia hết cho d
=> -1 chia hết cho d
mà d thuộc N* => d=1
=> ƯCLN (7n-1; 6n-1)=1
=> đpcm
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
A nguyen suy ra 2n+3 chia het cho n-2
suy ra 2n-4+7 chia het cho n-2 suy ra 2[n-2] +7 chia het cho n-2 suy ra 7 chia het cho n-2
n thuoc tap hop [3 ,1 ,9,-5]
hoc tot
Để P nguyên thì:
2n-1 chia hết cho n-1
=> 2n-2+1 chia hết cho n-1
=> 2.(n-1)+1 chia hết cho n-1
Mà 2(n-1) chia hết cho n-1
=> 1 chia hết cho n-1
=> n-1 \(\in\) Ư(1) = {-1; 1}
=> n \(\in\) {0; 2}
vì sao là 2n-2+1