Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{1974}+\frac{x+2}{1973}+\frac{x+3}{1972}=-3\)
\(=>\left(\frac{x+1}{1974}+1\right)+\left(\frac{x+2}{1973}+1\right)+\left(\frac{x+3}{1972}+1\right)=-3+3\)
\(=>\frac{x+1975}{1974}+\frac{x+1975}{1973}+\frac{x+1975}{1972}=0\)
\(\left(x+1975\right)\left(\frac{1}{1974}+\frac{1}{1973}+\frac{1}{1972}\right)=0\)
\(=>x+1975=0=>x=-1975\)
Vậy \(x=-1975\)
\(\frac{x+1}{1974}+\frac{x+2}{1973}+\frac{x+3}{1972}=-3\)
\(\Leftrightarrow\left(\frac{x+1}{1974}+1\right)+\left(\frac{x+2}{1973}+1\right)+\left(\frac{x+3}{1972}+1\right)=0\)
\(\Leftrightarrow\frac{x+1975}{1974}+\frac{x+1975}{1973}+\frac{x+1975}{1972}=0\)
\(\Leftrightarrow\left(x+1975\right)\left(\frac{1}{1974}+\frac{1}{1973}+\frac{1}{1972}\right)=0\)
\(\Leftrightarrow x+1975=0\)
\(\Leftrightarrow x=-1975\)
M=\(\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)
\(M=1-\frac{1}{5}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)
\(M=1-\frac{1}{5}-\frac{1}{5}+\frac{1}{n}\)
\(M=\frac{3}{5}+\frac{1}{n}\)
Mình chỉ giải đến đây thôi vì chẳng biết n bằng mấy cả
= - (1-1/5 +1/5 -1/9 +1/9 -1/13 +1/n + 1/n+4)
=-(1-1/n+4)
=-1+1/n+4
\(\frac{x+2}{2018}+\frac{x+3}{2017}+\frac{x+4}{2016}=-3\)
\(\frac{x+2}{2018}+1+\frac{x+3}{2017}+1+\frac{x+4}{2016}+1=0\)
\(\frac{x+2+2018}{2018}+\frac{x+3+2017}{2017}+\frac{x+4+2016}{2016}=0\)
\(\frac{x+2020}{2018}+\frac{x+2020}{2017}+\frac{x+2020}{2016}=0\)
\(\left(x+2020\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)
\(\Rightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
#Sakura
\(\frac{x+2}{2018}+\frac{x+3}{2017}+\frac{x+4}{2016}=-\overrightarrow{3}\)
=>\(\frac{x+2}{2018}+1+\frac{x+3}{2017}+1+\frac{x+4}{2016}+1=0\)
=>\(\frac{x+2020}{2018}+\frac{x+2020}{2017}+\frac{x+2020}{2016}=0\)
=>\(\left(x+2020\right):\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)
=>\(\left(x+2020\right)=0\)
=>\(x=0-2020\)
=>\(x=-2020\)
vậy ....
chúc bạn học tốt!
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+3}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right).\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2004=0\)
\(\Leftrightarrow x=-2004\)
Vậy \(x=-2004\)
A=\(\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right).\left(\frac{1}{16}-1\right).............\left(\frac{1}{9801}-1\right).\left(\frac{1}{10000}-1\right)\)
A=\(\left(\frac{1-4}{4}\right).\left(\frac{1-9}{9}\right).\left(\frac{1-16}{16}\right).............\left(\frac{1-9801}{9801}\right).\left(\frac{1-10000}{10000}\right)\)
A=\(\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.....................\frac{-9800}{9801}.\frac{-9999}{10000}\)
A=\(\frac{-1.3}{2^2}.\frac{-2.4}{3^2}.\frac{-3.5}{4^2}.....................\frac{-98.100}{99^2}.\frac{-99.101}{100^2}\)
A=\(\frac{\left[\left(-1\right).\left(-2\right).\left(-3\right)....................\left(-98\right).\left(-99\right)\right].\left(3.4.5............100.101\right)}{\left(2.3.4.........99.100\right).\left(2.3.4...............99.100\right)}\)
A=\(\frac{1.101}{100.2}\)=\(\frac{101}{200}\)
2
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.................+\frac{2}{x.\left(x+1\right)}=\frac{2015}{2017}\)
\(\frac{1}{3.2}+\frac{1}{6.2}+\frac{1}{10.2}+.................+\frac{2}{2.x.\left(x+1\right)}=\frac{1}{2}.\frac{2015}{2017}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..............+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)
\(\frac{x+1}{2.\left(x+1\right)}-\frac{2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)
\(\frac{\left(x+1\right)-2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)
\(\frac{x-1}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)
=>\(\frac{x-1}{x+1}=\frac{2015}{2017}.\frac{1}{2}:\frac{1}{2}\)
\(\frac{x-1}{x+1}=\frac{2015}{2017}\)
=>x+1=2017
=>x=2018-1
=>x=2016
Vậy x=2016
Còn bài 3 em ko biết làm em ms lớp 6
Chúc anh học tốt
a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)
=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)
=> x + 1 = 0
=> x = -1
b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)
=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)
=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)
=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
=> x - 2021 = 0
=> x = 2021
c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)
=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)
=> \(-\frac{1}{12}x+6=7\)
=> \(-\frac{1}{12}x=1\)
=> x = -12
Ta có : \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...+\left|x+\frac{1}{110}\right|\ge0\forall x\)
=> 11x \(\ge\)0
=> x \(\ge\)0
Khi đó \(\orbr{\begin{cases}x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=11x\left(10\text{ số hạng x }\right)\\x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=-11x\left(10\text{ số hạng x}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=11x\\10x+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=-11x\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=11x\\10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=-11x\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=11x\\10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=-11x\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(1-\frac{1}{11}\right)=11x\\10x+\left(1-\frac{1}{11}\right)=-11x\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{10}{11}\\21x=-\frac{10}{11}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{10}{11}\left(\text{tm}\right)\\x=-\frac{10}{231}\left(\text{loại}\right)\end{cases}}}\)
Vậy \(x=\frac{10}{11}\)
x/1 - x/5 + x/5 - x/9 +x/9 - x/13 ..... + x/53 - x/57 = 56/57
x/1 - x/57 = 56/57
56x/57 = 56/57
56x = 56
=> X = 1
Tk mình với bạn ơi. Đúng rồi nhé!!
CHÚC BẠN HỌC TỐT ✓✓
\(\frac{x}{1.5}+\frac{x}{5.9}+\frac{x}{9.13}+...+\frac{x}{53.57}=\frac{56}{57}\)
\(\Leftrightarrow\frac{x}{1}-\frac{x}{5}+\frac{x}{5}-\frac{x}{7}+\frac{x}{9}-\frac{x}{13}+...+\frac{x}{53}-\frac{x}{57}=\frac{56}{57}\)
\(\Leftrightarrow\frac{x}{1}-\frac{x}{57}=\frac{56}{57}\)
\(\Leftrightarrow\frac{x.57}{57}-\frac{x}{57}=\frac{56}{57}\)
\(\Leftrightarrow\frac{x.57-x}{57}=\frac{56}{57}\)
\(\Leftrightarrow\frac{x.56}{57}=\frac{56}{57}\)
\(\Leftrightarrow x=1\)