K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

Lớp 7 vừa học hằng đẳng thức, chú ý hằng đẳng thức sau: (a - b)(a + b) = a2 - b2.

Bạn cần khử căn dưới mẫu và cộng tổng bên trái, muốn vậy bạn phải đánh giá từng phân số bằng cách làm trội nó

Sử dụng đánh giá sau: \(\frac{1}{\sqrt{k}}>\frac{1}{\sqrt{k}+\sqrt{k-1}}=\sqrt{k}-\sqrt{k-1}\)

1 tháng 4 2020

Ta có:

\(\frac{1}{\sqrt{1}}>\frac{10}{\sqrt{100}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=10\)(đpcm)

4 tháng 11 2018

Ai trả lời nhanh mk k cho

24 tháng 4 2020

Fat you

15 tháng 12 2019

a)\(\Delta ABC\)ĐỀUCÓ CÁC ĐƯỜNG CAO AD ,BE ,CF BẰNG NHAU .TA PHẢI CHỨNG MINH \(\Delta ABC\)ĐỀU.\(\Delta FBC=\Delta ECB\))(ẠNH HUYỀN CẠNH GÓC VUÔNG)SUY RA \(\widehat{B}=\widehat{C}\)CHỨNG MINH TƯƠNG TỰ TA ĐƯỢC\(\widehat{A}=\widehat{C}\)

b)GỌI ĐỘ DÀI MỖI CẠNH TAM GIÁC LÀ X

XÉT\(\Delta ADC\)VUÔNG TẠI D CÓ \(AC^2=AD^2+CD^2\)(ĐỊNH LÝ PI-TA-GO)

TỪ ĐÓ TÍNH ĐƯỢC X=A

A B C E F D

19 tháng 3 2020

\(\text{Σ}\frac{x^2}{\sqrt[3]{x^3+8}}=\text{Σ}\frac{x^2}{\sqrt[3]{\left(x+2\right)\left(x^2-2x+4\right)}}\ge\text{Σ}\frac{x^2}{\frac{x+2+x^2-2x+4}{2}}=\text{2}\left(Σ\frac{x^2}{x^2-x+6}\right)\)
Áp dụng BDT Cauchy-Schwarz:
\(VT\ge2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-x-y-z+18}\)
Áp dụng BDT: \(9=3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2\Rightarrow x+y+z\ge3\)

\(\Rightarrow VT\ge2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-3+18}=2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+15}=2\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+3\left(xy+yz+xz\right)}\)
\(\ge2\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)^2}=1\)

Dấu = xảy ra khi x=y=z=1
 

10 tháng 7 2015

A = \(\frac{2012-1}{\sqrt{2012}}+\frac{2011+1}{\sqrt{2011}}=\sqrt{2012}-\frac{1}{\sqrt{2012}}+\sqrt{2011}+\frac{1}{\sqrt{2011}}\)

A = \(\sqrt{2012}+\sqrt{2011}+\left(\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\right)=B+\left(\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\right)\)

Mà 2011 < 2012 nên \(\frac{1}{\sqrt{2011}}>\frac{1}{\sqrt{2012}}\Rightarrow\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}>0\)

=> A > B

25 tháng 12 2018

\(-\frac{5}{9}\left(\frac{3}{10}-\frac{2}{5}\right)=-\frac{5}{9}\left(\frac{3}{10}-\frac{4}{10}\right)=-\frac{5}{9}.\frac{-1}{10}=\frac{1}{18}\)

\(\frac{1}{2}\sqrt{64}-\sqrt{\frac{9}{25}}+1^{2016}=\frac{1}{2}.8-\frac{3}{5}+1=4+\frac{2}{5}=\frac{22}{5}\)

\(2^8:2^5+3^2.2-12=2^3+9.2-12=8+18-12=8+6=14\)

25 tháng 12 2018

\(3^x+\sqrt{\frac{16}{81}}-\sqrt{9}+\frac{\sqrt{81}}{3}=9\frac{4}{9}\)

\(3^x+\frac{4}{9}-3+\frac{9}{3}=9\frac{4}{9}\)

\(3^x+\frac{4}{9}-3+3=9\frac{4}{9}\)

\(3^x+\frac{4}{9}=9+\frac{4}{9}\)

\(\Rightarrow3^x=9+\frac{4}{9}-\frac{4}{9}\)

\(3^x=9\)

\(3^x=3^2\)

\(\Rightarrow x=2\)

Vậy \(x=2\)

25 tháng 10 2018

\(\sqrt{81}\)=9

\(\sqrt{0}\)=0

\(\sqrt{9}\)=3

\(\sqrt{81}=9\)

\(\sqrt{0}=0\)

\(\sqrt{9}=3\)

Học tốt!!!

a)\(\sqrt{x}=0\)

=> x = 0

b)\(\sqrt{x}=3\)

=> x = 3

c)\(\sqrt{x}=2\)

=> x = 2

d)\(\sqrt{x+11}=11\)

=> x = 0

e)\(\sqrt{x-7}=17\)

=> x = 24

f)\(\sqrt{19-x}=19\)

=> x = 0

Học tốt!!!